774,245 research outputs found

    The Kondo Box: A Magnetic Impurity in an Ultrasmall Metallic Grain

    Full text link
    We study the Kondo effect generated by a single magnetic impurity embedded in an ultrasmall metallic grain, to be called a ``Kondo box''. We find that the Kondo resonance is strongly affected when the mean level spacing in the grain becomes larger than the Kondo temperature, in a way that depends on the parity of the number of electrons on the grain. We show that the single-electron tunneling conductance through such a grain features Kondo-induced Fano-type resonances of measurable size, with an anomalous dependence on temperature and level spacing.Comment: 4 Latex pages, 4 figures, submitted to Phys. Rev. Let

    Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin film

    Full text link
    Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of the magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using epitaxial stabilization technique with atomically flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin film with crystalline quality of each grain comparable to that of single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.Comment: 24 pages, 5 figure

    Strongly coupled artificial bulk HTS grain boundaries with high critical current densities

    Get PDF
    A multi-seeding process has been developed to fabricate single Y-Ba-Cu-O (YBCO) grains containing strong artificial grain boundaries. Multi-seeding of heterogeneous YBCO grains with controlled orientation was achieved using large Sm-Ba-Cu-O (SmBCO) single crystal seeds of rod-like geometry with slots of various widths (up to 13 mm) cut into their bottom surface (i.e. parallel to the c-axis of the seed) to produce a bridge-like structure. Several YBCO grains with artificial grain boundaries were fabricated from these seed crystals and used to investigate the effect of varying the distance between the individual grain nucleation sites and the grain orientation (in-plane and out of plane) on the nature of grain boundaries. The measured local magnetic critical current density (Jc) and the magnitude of the trapped field across these artificial grain boundaries indicate that seed alignment is a key parameter in achieving strongly-coupled grain boundaries in multi-seeded grains

    Magnetic susceptibility of ultra-small superconductor grains

    Full text link
    For assemblies of superconductor nanograins, the magnetic response is analyzed as a function of both temperature and magnetic field. In order to describe the interaction energy of electron pairs for a huge number of many-particle states, involved in calculations, we develop a simple approximation, based on the Richardson solution for the reduced BCS Hamiltonian and applicable over a wide range of the grain sizes and interaction strengths at arbitrary distributions of single-electron energy levels in a grain. Our study is focused upon ultra-small grains, where both the mean value of the nearest-neighbor spacing of single-electron energy levels in a grain and variations of this spacing from grain to grain significantly exceed the superconducting gap in bulk samples of the same material. For these ultra-small superconductor grains, the overall profiles of the magnetic susceptibility as a function of magnetic field and temperature are demonstrated to be qualitatively different from those for normal grains. We show that the analyzed signatures of pairing correlations are sufficiently stable with respect to variations of the average value of the grain size and its dispersion over an assembly of nanograins. The presence of these signatures does not depend on a particular choice of statistics, obeyed by single-electron energy levels in grains.Comment: 40 pages, 12 figures, submitted to Phys. Rev. B, E-mail addresses: [email protected], [email protected], [email protected]

    Single grain heating due to inelastic cotunneling

    Full text link
    We study heating effects of a single metallic quantum dot weakly coupled to two leads. The dominant mechanism for heating at low temperatures is due to inelastic electron cotunneling processes. We calculate the grain temperature profile as a function of grain parameters, bias voltage, and time and show that for nanoscale size grains the heating effects are pronounced and easily measurable in experiments.Comment: 4 pages, 3 figures, revtex4, extended and corrected versio

    Energetics and structural properties of twist grain boundaries in Cu

    Get PDF
    Structural and energetics properties of atoms near a grain boundary are of great importance from theoretical and experimental standpoints. From various experimental work it is concluded that diffusion at low temperatures at polycrystalline materials take place near grain boundary. Experimental and theoretical results also indicate changes of up to 70 percent in physical properties near a grain boundary. The Embedded Atom Method (EAM) calculations on structural properties of Au twist grain boundaries are in quite good agreement with their experimental counterparts. The EAM is believed to predict reliable values for the single vacancy formation energy as well as migration energy. However, it is not clear whether the EAM functions which are fitted to the bulk properties of a perfect crystalline solid can produce reliable results on grain boundaries. One of the objectives of this work is to construct the EAM functions for Cu and use them in conjunction with the molecular static simulation to study structures and energetics of atoms near twist grain boundaries in Cu. This provides tests of the EAM functions near a grain boundary. In particular, we determine structure, single vacancy formation energy, migration energy, single vacancy activation energy, and interlayer spacing as a function of distance from grain boundary. Our results are compared with the available experimental and theoretical results from grain boundaries and bulk

    Automated quantitative analysis of single and double label autoradiographs

    Get PDF
    A method for the analysis of silver grain content in both single and double label autoradiographs is presented. The total grain area is calculated by counting the number of pixels at which the recorded light intensity in transmission dark field illumination exceeds a selected threshold. The calibration tests included autoradiographs with low (3H- thymidin) and high (3H-desoxyuridin) silver grain density. The results are proportional to the customary visual grain count. For the range of visibly countable grain densities in single labeled specimens, the correlation coefficient between the computed values and the visual grain counts is better than 0.96. In the first emulsion of the two emulsion layer autoradiographs of double labeled specimens (3H-14C- thymidin) the correlation coefficient is 0.919 and 0.906. The method provides a statistical correction for the background grains not due to the isotope. The possibility to record 14C tracks by shifting the focus through the second emulsion of the double labeled specimens is also demonstrated. The reported technique is essentially independent of size, shape and density of the grains
    corecore