25,320 research outputs found

    Multi-camera Realtime 3D Tracking of Multiple Flying Animals

    Full text link
    Automated tracking of animal movement allows analyses that would not otherwise be possible by providing great quantities of data. The additional capability of tracking in realtime - with minimal latency - opens up the experimental possibility of manipulating sensory feedback, thus allowing detailed explorations of the neural basis for control of behavior. Here we describe a new system capable of tracking the position and body orientation of animals such as flies and birds. The system operates with less than 40 msec latency and can track multiple animals simultaneously. To achieve these results, a multi target tracking algorithm was developed based on the Extended Kalman Filter and the Nearest Neighbor Standard Filter data association algorithm. In one implementation, an eleven camera system is capable of tracking three flies simultaneously at 60 frames per second using a gigabit network of nine standard Intel Pentium 4 and Core 2 Duo computers. This manuscript presents the rationale and details of the algorithms employed and shows three implementations of the system. An experiment was performed using the tracking system to measure the effect of visual contrast on the flight speed of Drosophila melanogaster. At low contrasts, speed is more variable and faster on average than at high contrasts. Thus, the system is already a useful tool to study the neurobiology and behavior of freely flying animals. If combined with other techniques, such as `virtual reality'-type computer graphics or genetic manipulation, the tracking system would offer a powerful new way to investigate the biology of flying animals.Comment: pdfTeX using libpoppler 3.141592-1.40.3-2.2 (Web2C 7.5.6), 18 pages with 9 figure

    Flight Dynamics-based Recovery of a UAV Trajectory using Ground Cameras

    Get PDF
    We propose a new method to estimate the 6-dof trajectory of a flying object such as a quadrotor UAV within a 3D airspace monitored using multiple fixed ground cameras. It is based on a new structure from motion formulation for the 3D reconstruction of a single moving point with known motion dynamics. Our main contribution is a new bundle adjustment procedure which in addition to optimizing the camera poses, regularizes the point trajectory using a prior based on motion dynamics (or specifically flight dynamics). Furthermore, we can infer the underlying control input sent to the UAV's autopilot that determined its flight trajectory. Our method requires neither perfect single-view tracking nor appearance matching across views. For robustness, we allow the tracker to generate multiple detections per frame in each video. The true detections and the data association across videos is estimated using robust multi-view triangulation and subsequently refined during our bundle adjustment procedure. Quantitative evaluation on simulated data and experiments on real videos from indoor and outdoor scenes demonstrates the effectiveness of our method

    Robust visual servoing in 3d reaching tasks

    Get PDF
    This paper describes a novel approach to the problem of reaching an object in space under visual guidance. The approach is characterized by a great robustness to calibration errors, such that virtually no calibration is required. Servoing is based on binocular vision: a continuous measure of the end-effector motion field, derived from real-time computation of the binocular optical flow over the stereo images, is compared with the actual position of the target and the relative error in the end-effector trajectory is continuously corrected. The paper outlines the general framework of the approach, shows how visual measures are obtained and discusses the synthesis of the controller along with its stability analysis. Real-time experiments are presented to show the applicability of the approach in real 3-D applications

    Calibration and Validation of A Shared space Model: A Case Study

    Get PDF
    Shared space is an innovative streetscape design that seeks minimum separation between vehicle traffic and pedestrians. Urban design is moving toward space sharing as a means of increasing the community texture of street surroundings. Its unique features aim to balance priorities and allow cars and pedestrians to coexist harmoniously without the need to dictate behavior. There is, however, a need for a simulation tool to model future shared space schemes and to help judge whether they might represent suitable alternatives to traditional street layouts. This paper builds on the authors’ previously published work in which a shared space microscopic mixed traffic model based on the social force model (SFM) was presented, calibrated, and evaluated with data from the shared space link typology of New Road in Brighton, United Kingdom. Here, the goal is to explore the transferability of the authors’ model to a similar shared space typology and investigate the effect of flow and ratio of traffic modes. Data recorded from the shared space scheme of Exhibition Road, London, were collected and analyzed. The flow and speed of cars and segregation between pedestrians and cars are greater on Exhibition Road than on New Road. The rule-based SFM for shared space modeling is calibrated and validated with the real data. On the basis of the results, it can be concluded that shared space schemes are context dependent and that factors such as the infrastructural design of the environment and the flow and speed of pedestrians and vehicles affect the willingness to share space

    Three-Dimensional Time-Resolved Trajectories from Laboratory Insect Swarms

    Get PDF
    Aggregations of animals display complex and dynamic behaviour, both at the individual level and on the level of the group as a whole. Often, this behaviour is collective, so that the group exhibits properties that are distinct from those of the individuals. In insect swarms, the motion of individuals is typically convoluted, and swarms display neither net polarization nor correlation. The swarms themselves, however, remain nearly stationary and maintain their cohesion even in noisy natural environments. This behaviour stands in contrast with other forms of collective animal behaviour, such as flocking, schooling, or herding, where the motion of individuals is more coordinated, and thus swarms provide a powerful way to study the underpinnings of collective behaviour as distinct from global order. Here, we provide a data set of three-dimensional, time-resolved trajectories, including positions, velocities, and accelerations, of individual insects in laboratory insect swarms. The data can be used to study the collective as a whole as well as the dynamics and behaviour of individuals within the swarm

    A Low Cost UWB Based Solution for Direct Georeferencing UAV Photogrammetry

    Get PDF
    Thanks to their flexibility and availability at reduced costs, Unmanned Aerial Vehicles (UAVs) have been recently used on a wide range of applications and conditions. Among these, they can play an important role in monitoring critical events (e.g., disaster monitoring) when the presence of humans close to the scene shall be avoided for safety reasons, in precision farming and surveying. Despite the very large number of possible applications, their usage is mainly limited by the availability of the Global Navigation Satellite System (GNSS) in the considered environment: indeed, GNSS is of fundamental importance in order to reduce positioning error derived by the drift of (low-cost) Micro-Electro-Mechanical Systems (MEMS) internal sensors. In order to make the usage of UAVs possible even in critical environments (when GNSS is not available or not reliable, e.g., close to mountains or in city centers, close to high buildings), this paper considers the use of a low cost Ultra Wide-Band (UWB) system as the positioning method. Furthermore, assuming the use of a calibrated camera, UWB positioning is exploited to achieve metric reconstruction on a local coordinate system. Once the georeferenced position of at least three points (e.g., positions of three UWB devices) is known, then georeferencing can be obtained, as well. The proposed approach is validated on a specific case study, the reconstruction of the façade of a university building. Average error on 90 check points distributed over the building façade, obtained by georeferencing by means of the georeferenced positions of four UWB devices at fixed positions, is 0.29 m. For comparison, the average error obtained by using four ground control points is 0.18 m
    • …
    corecore