17,532 research outputs found

    SurfelWarp: Efficient Non-Volumetric Single View Dynamic Reconstruction

    Full text link
    We contribute a dense SLAM system that takes a live stream of depth images as input and reconstructs non-rigid deforming scenes in real time, without templates or prior models. In contrast to existing approaches, we do not maintain any volumetric data structures, such as truncated signed distance function (TSDF) fields or deformation fields, which are performance and memory intensive. Our system works with a flat point (surfel) based representation of geometry, which can be directly acquired from commodity depth sensors. Standard graphics pipelines and general purpose GPU (GPGPU) computing are leveraged for all central operations: i.e., nearest neighbor maintenance, non-rigid deformation field estimation and fusion of depth measurements. Our pipeline inherently avoids expensive volumetric operations such as marching cubes, volumetric fusion and dense deformation field update, leading to significantly improved performance. Furthermore, the explicit and flexible surfel based geometry representation enables efficient tackling of topology changes and tracking failures, which makes our reconstructions consistent with updated depth observations. Our system allows robots to maintain a scene description with non-rigidly deformed objects that potentially enables interactions with dynamic working environments.Comment: RSS 2018. The video and source code are available on https://sites.google.com/view/surfelwarp/hom

    WarpNet: Weakly Supervised Matching for Single-view Reconstruction

    Full text link
    We present an approach to matching images of objects in fine-grained datasets without using part annotations, with an application to the challenging problem of weakly supervised single-view reconstruction. This is in contrast to prior works that require part annotations, since matching objects across class and pose variations is challenging with appearance features alone. We overcome this challenge through a novel deep learning architecture, WarpNet, that aligns an object in one image with a different object in another. We exploit the structure of the fine-grained dataset to create artificial data for training this network in an unsupervised-discriminative learning approach. The output of the network acts as a spatial prior that allows generalization at test time to match real images across variations in appearance, viewpoint and articulation. On the CUB-200-2011 dataset of bird categories, we improve the AP over an appearance-only network by 13.6%. We further demonstrate that our WarpNet matches, together with the structure of fine-grained datasets, allow single-view reconstructions with quality comparable to using annotated point correspondences.Comment: to appear in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 201

    Learning Shape Priors for Single-View 3D Completion and Reconstruction

    Full text link
    The problem of single-view 3D shape completion or reconstruction is challenging, because among the many possible shapes that explain an observation, most are implausible and do not correspond to natural objects. Recent research in the field has tackled this problem by exploiting the expressiveness of deep convolutional networks. In fact, there is another level of ambiguity that is often overlooked: among plausible shapes, there are still multiple shapes that fit the 2D image equally well; i.e., the ground truth shape is non-deterministic given a single-view input. Existing fully supervised approaches fail to address this issue, and often produce blurry mean shapes with smooth surfaces but no fine details. In this paper, we propose ShapeHD, pushing the limit of single-view shape completion and reconstruction by integrating deep generative models with adversarially learned shape priors. The learned priors serve as a regularizer, penalizing the model only if its output is unrealistic, not if it deviates from the ground truth. Our design thus overcomes both levels of ambiguity aforementioned. Experiments demonstrate that ShapeHD outperforms state of the art by a large margin in both shape completion and shape reconstruction on multiple real datasets.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://shapehd.csail.mit.edu
    • …
    corecore