46,018 research outputs found

    Examplers based image fusion features for face recognition

    Full text link
    Examplers of a face are formed from multiple gallery images of a person and are used in the process of classification of a test image. We incorporate such examplers in forming a biologically inspired local binary decisions on similarity based face recognition method. As opposed to single model approaches such as face averages the exampler based approach results in higher recognition accu- racies and stability. Using multiple training samples per person, the method shows the following recognition accuracies: 99.0% on AR, 99.5% on FERET, 99.5% on ORL, 99.3% on EYALE, 100.0% on YALE and 100.0% on CALTECH face databases. In addition to face recognition, the method also detects the natural variability in the face images which can find application in automatic tagging of face images

    Face Recognition: A Novel Multi-Level Taxonomy based Survey

    Full text link
    In a world where security issues have been gaining growing importance, face recognition systems have attracted increasing attention in multiple application areas, ranging from forensics and surveillance to commerce and entertainment. To help understanding the landscape and abstraction levels relevant for face recognition systems, face recognition taxonomies allow a deeper dissection and comparison of the existing solutions. This paper proposes a new, more encompassing and richer multi-level face recognition taxonomy, facilitating the organization and categorization of available and emerging face recognition solutions; this taxonomy may also guide researchers in the development of more efficient face recognition solutions. The proposed multi-level taxonomy considers levels related to the face structure, feature support and feature extraction approach. Following the proposed taxonomy, a comprehensive survey of representative face recognition solutions is presented. The paper concludes with a discussion on current algorithmic and application related challenges which may define future research directions for face recognition.Comment: This paper is a preprint of a paper submitted to IET Biometrics. If accepted, the copy of record will be available at the IET Digital Librar

    Texture image analysis and texture classification methods - A review

    Full text link
    Tactile texture refers to the tangible feel of a surface and visual texture refers to see the shape or contents of the image. In the image processing, the texture can be defined as a function of spatial variation of the brightness intensity of the pixels. Texture is the main term used to define objects or concepts of a given image. Texture analysis plays an important role in computer vision cases such as object recognition, surface defect detection, pattern recognition, medical image analysis, etc. Since now many approaches have been proposed to describe texture images accurately. Texture analysis methods usually are classified into four categories: statistical methods, structural, model-based and transform-based methods. This paper discusses the various methods used for texture or analysis in details. New researches shows the power of combinational methods for texture analysis, which can't be in specific category. This paper provides a review on well known combinational methods in a specific section with details. This paper counts advantages and disadvantages of well-known texture image descriptors in the result part. Main focus in all of the survived methods is on discrimination performance, computational complexity and resistance to challenges such as noise, rotation, etc. A brief review is also made on the common classifiers used for texture image classification. Also, a survey on texture image benchmark datasets is included.Comment: 29 Pages, Keywords: Texture Image, Texture Analysis, Texture classification, Feature extraction, Image processing, Local Binary Patterns, Benchmark texture image dataset

    Fractional Local Neighborhood Intensity Pattern for Image Retrieval using Genetic Algorithm

    Full text link
    In this paper, a new texture descriptor named "Fractional Local Neighborhood Intensity Pattern" (FLNIP) has been proposed for content based image retrieval (CBIR). It is an extension of the Local Neighborhood Intensity Pattern (LNIP)[1]. FLNIP calculates the relative intensity difference between a particular pixel and the center pixel of a 3x3 window by considering the relationship with adjacent neighbors. In this work, the fractional change in the local neighborhood involving the adjacent neighbors has been calculated first with respect to one of the eight neighbors of the center pixel of a 3x3 window. Next, the fractional change has been calculated with respect to the center itself. The two values of fractional change are next compared to generate a binary bit pattern. Both sign and magnitude information are encoded in a single descriptor as it deals with the relative change in magnitude in the adjacent neighborhood i.e., the comparison of the fractional change. The descriptor is applied on four multi-resolution images -- one being the raw image and the other three being filtered gaussian images obtained by applying gaussian filters of different standard deviations on the raw image to signify the importance of exploring texture information at different resolutions in an image. The four sets of distances obtained between the query and the target image are then combined with a genetic algorithm based approach to improve the retrieval performance by minimizing the distance between similar class images. The performance of the method has been tested for image retrieval on four popular databases. The precision and recall values observed on these databases have been compared with recent state-of-art local patterns. The proposed method has shown a significant improvement over many other existing methods.Comment: MTAP, Springer(Minor Revision

    Evaluation of the Spatio-Temporal features and GAN for Micro-expression Recognition System

    Full text link
    Owing to the development and advancement of artificial intelligence, numerous works were established in the human facial expression recognition system. Meanwhile, the detection and classification of micro-expressions are attracting attentions from various research communities in the recent few years. In this paper, we first review the processes of a conventional optical-flow-based recognition system, which comprised of facial landmarks annotations, optical flow guided images computation, features extraction and emotion class categorization. Secondly, a few approaches have been proposed to improve the feature extraction part, such as exploiting GAN to generate more image samples. Particularly, several variations of optical flow are computed in order to generate optimal images to lead to high recognition accuracy. Next, GAN, a combination of Generator and Discriminator, is utilized to generate new "fake" images to increase the sample size. Thirdly, a modified state-of-the-art Convolutional neural networks is proposed. To verify the effectiveness of the the proposed method, the results are evaluated on spontaneous micro-expression databases, namely SMIC, CASME II and SAMM. Both the F1-score and accuracy performance metrics are reported in this paper.Comment: 15 pages, 16 figures, 6 table

    Local Neighborhood Intensity Pattern: A new texture feature descriptor for image retrieval

    Full text link
    In this paper, a new texture descriptor based on the local neighborhood intensity difference is proposed for content based image retrieval (CBIR). For computation of texture features like Local Binary Pattern (LBP), the center pixel in a 3*3 window of an image is compared with all the remaining neighbors, one pixel at a time to generate a binary bit pattern. It ignores the effect of the adjacent neighbors of a particular pixel for its binary encoding and also for texture description. The proposed method is based on the concept that neighbors of a particular pixel hold a significant amount of texture information that can be considered for efficient texture representation for CBIR. Taking this into account, we develop a new texture descriptor, named as Local Neighborhood Intensity Pattern (LNIP) which considers the relative intensity difference between a particular pixel and the center pixel by considering its adjacent neighbors and generate a sign and a magnitude pattern. Since sign and magnitude patterns hold complementary information to each other, these two patterns are concatenated into a single feature descriptor to generate a more concrete and useful feature descriptor. The proposed descriptor has been tested for image retrieval on four databases, including three texture image databases - Brodatz texture image database, MIT VisTex database and Salzburg texture database and one face database AT&T face database. The precision and recall values observed on these databases are compared with some state-of-art local patterns. The proposed method showed a significant improvement over many other existing methods.Comment: Expert Systems with Applications(Elsevier

    From BoW to CNN: Two Decades of Texture Representation for Texture Classification

    Full text link
    Texture is a fundamental characteristic of many types of images, and texture representation is one of the essential and challenging problems in computer vision and pattern recognition which has attracted extensive research attention. Since 2000, texture representations based on Bag of Words (BoW) and on Convolutional Neural Networks (CNNs) have been extensively studied with impressive performance. Given this period of remarkable evolution, this paper aims to present a comprehensive survey of advances in texture representation over the last two decades. More than 200 major publications are cited in this survey covering different aspects of the research, which includes (i) problem description; (ii) recent advances in the broad categories of BoW-based, CNN-based and attribute-based methods; and (iii) evaluation issues, specifically benchmark datasets and state of the art results. In retrospect of what has been achieved so far, the survey discusses open challenges and directions for future research.Comment: Accepted by IJC

    Facial Expression Recognition Based on Complexity Perception Classification Algorithm

    Full text link
    Facial expression recognition (FER) has always been a challenging issue in computer vision. The different expressions of emotion and uncontrolled environmental factors lead to inconsistencies in the complexity of FER and variability of between expression categories, which is often overlooked in most facial expression recognition systems. In order to solve this problem effectively, we presented a simple and efficient CNN model to extract facial features, and proposed a complexity perception classification (CPC) algorithm for FER. The CPC algorithm divided the dataset into an easy classification sample subspace and a complex classification sample subspace by evaluating the complexity of facial features that are suitable for classification. The experimental results of our proposed algorithm on Fer2013 and CK-plus datasets demonstrated the algorithm's effectiveness and superiority over other state-of-the-art approaches

    Local Jet Pattern: A Robust Descriptor for Texture Classification

    Full text link
    Methods based on local image features have recently shown promise for texture classification tasks, especially in the presence of large intra-class variation due to illumination, scale, and viewpoint changes. Inspired by the theories of image structure analysis, this paper presents a simple, efficient, yet robust descriptor namely local jet pattern (LJP) for texture classification. In this approach, a jet space representation of a texture image is derived from a set of derivatives of Gaussian (DtGs) filter responses up to second order, so called local jet vectors (LJV), which also satisfy the Scale Space properties. The LJP is obtained by utilizing the relationship of center pixel with the local neighborhood information in jet space. Finally, the feature vector of a texture region is formed by concatenating the histogram of LJP for all elements of LJV. All DtGs responses up to second order together preserves the intrinsic local image structure, and achieves invariance to scale, rotation, and reflection. This allows us to develop a texture classification framework which is discriminative and robust. Extensive experiments on five standard texture image databases, employing nearest subspace classifier (NSC), the proposed descriptor achieves 100%, 99.92%, 99.75%, 99.16%, and 99.65% accuracy for Outex_TC-00010 (Outex_TC10), and Outex_TC-00012 (Outex_TC12), KTH-TIPS, Brodatz, CUReT, respectively, which are outperforms the state-of-the-art methods.Comment: Accepted in Multimedia Tools and Applications, Springe

    A Review on Facial Micro-Expressions Analysis: Datasets, Features and Metrics

    Full text link
    Facial micro-expressions are very brief, spontaneous facial expressions that appear on the face of humans when they either deliberately or unconsciously conceal an emotion. Micro-expression has shorter duration than macro-expression, which makes it more challenging for human and machine. Over the past ten years, automatic micro-expressions recognition has attracted increasing attention from researchers in psychology, computer science, security, neuroscience and other related disciplines. The aim of this paper is to provide the insights of automatic micro-expressions and recommendations for future research. There has been a lot of datasets released over the last decade that facilitated the rapid growth in this field. However, comparison across different datasets is difficult due to the inconsistency in experiment protocol, features used and evaluation methods. To address these issues, we review the datasets, features and the performance metrics deployed in the literature. Relevant challenges such as the spatial temporal settings during data collection, emotional classes versus objective classes in data labelling, face regions in data analysis, standardisation of metrics and the requirements for real-world implementation are discussed. We conclude by proposing some promising future directions to advancing micro-expressions research.Comment: Preprint submitted to IEEE Transaction
    • …
    corecore