517 research outputs found

    Multi-Scale Fusion of Enhanced Hazy Images Using Particle Swarm Optimization and Fuzzy Intensification Operators

    Get PDF
    Dehazing from a single image is still a challenging task, where the thickness of the haze depends on depth information. Researchers focus on this area by eliminating haze from the single image by using restoration techniques based on haze image model. Using haze image model, the haze is eliminated by estimating atmospheric light, transmission, and depth. A few researchers have focused on enhancement based methods for eliminating haze from images. Enhancement based dehazing algorithms will lead to saturation of pixels in the enhanced image. This is due to assigning fixed values to the parameters used to enhance an image. Therefore, the enhancement based methods fail in the proper tuning of the parameters. This can be overcome by optimizing the parameters that are used to enhance the images. This paper describes the research work carried to derive two enhanced images from a single input hazy image using particle swarm optimization and fuzzy intensification operators. The two derived images are further fused using multi-scale fusion technique. The objective evaluation shows that the entropy of the haze eliminated images is comparatively better than the state-of-the-art algorithms. Also, the fog density is measured using an evaluator known as fog aware density evaluator (FADE), which considers all the statistical parameters to differentiate a hazy image from a highly visible natural image. Using this evaluator we found that the density of the fog is less in our proposed method when compared with enhancement based algorithms used to eliminate haze from images

    Learning to Dehaze from Realistic Scene with A Fast Physics-based Dehazing Network

    Full text link
    Dehazing is a popular computer vision topic for long. A real-time dehazing method with reliable performance is highly desired for many applications such as autonomous driving. While recent learning-based methods require datasets containing pairs of hazy images and clean ground truth references, it is generally impossible to capture accurate ground truth in real scenes. Many existing works compromise this difficulty to generate hazy images by rendering the haze from depth on common RGBD datasets using the haze imaging model. However, there is still a gap between the synthetic datasets and real hazy images as large datasets with high-quality depth are mostly indoor and depth maps for outdoor are imprecise. In this paper, we complement the existing datasets with a new, large, and diverse dehazing dataset containing real outdoor scenes from High-Definition (HD) 3D movies. We select a large number of high-quality frames of real outdoor scenes and render haze on them using depth from stereo. Our dataset is more realistic than existing ones and we demonstrate that using this dataset greatly improves the dehazing performance on real scenes. In addition to the dataset, we also propose a light and reliable dehazing network inspired by the physics model. Our approach outperforms other methods by a large margin and becomes the new state-of-the-art method. Moreover, the light-weight design of the network enables our method to run at a real-time speed, which is much faster than other baseline methods

    Enhancing Visibility in Nighttime Haze Images Using Guided APSF and Gradient Adaptive Convolution

    Full text link
    Visibility in hazy nighttime scenes is frequently reduced by multiple factors, including low light, intense glow, light scattering, and the presence of multicolored light sources. Existing nighttime dehazing methods often struggle with handling glow or low-light conditions, resulting in either excessively dark visuals or unsuppressed glow outputs. In this paper, we enhance the visibility from a single nighttime haze image by suppressing glow and enhancing low-light regions. To handle glow effects, our framework learns from the rendered glow pairs. Specifically, a light source aware network is proposed to detect light sources of night images, followed by the APSF (Angular Point Spread Function)-guided glow rendering. Our framework is then trained on the rendered images, resulting in glow suppression. Moreover, we utilize gradient-adaptive convolution, to capture edges and textures in hazy scenes. By leveraging extracted edges and textures, we enhance the contrast of the scene without losing important structural details. To boost low-light intensity, our network learns an attention map, then adjusted by gamma correction. This attention has high values on low-light regions and low values on haze and glow regions. Extensive evaluation on real nighttime haze images, demonstrates the effectiveness of our method. Our experiments demonstrate that our method achieves a PSNR of 30.38dB, outperforming state-of-the-art methods by 13%\% on GTA5 nighttime haze dataset. Our data and code is available at: \url{https://github.com/jinyeying/nighttime_dehaze}.Comment: Accepted to ACM'MM2023, https://github.com/jinyeying/nighttime_dehaz
    • …
    corecore