82,095 research outputs found

    Learning a Pose Lexicon for Semantic Action Recognition

    Get PDF
    This paper presents a novel method for learning a pose lexicon comprising semantic poses defined by textual instructions and their associated visual poses defined by visual features. The proposed method simultaneously takes two input streams, semantic poses and visual pose candidates, and statistically learns a mapping between them to construct the lexicon. With the learned lexicon, action recognition can be cast as the problem of finding the maximum translation probability of a sequence of semantic poses given a stream of visual pose candidates. Experiments evaluating pre-trained and zero-shot action recognition conducted on MSRC-12 gesture and WorkoutSu-10 exercise datasets were used to verify the efficacy of the proposed method.Comment: Accepted by the 2016 IEEE International Conference on Multimedia and Expo (ICME 2016). 6 pages paper and 4 pages supplementary materia

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    An Expressive Deep Model for Human Action Parsing from A Single Image

    Full text link
    This paper aims at one newly raising task in vision and multimedia research: recognizing human actions from still images. Its main challenges lie in the large variations in human poses and appearances, as well as the lack of temporal motion information. Addressing these problems, we propose to develop an expressive deep model to naturally integrate human layout and surrounding contexts for higher level action understanding from still images. In particular, a Deep Belief Net is trained to fuse information from different noisy sources such as body part detection and object detection. To bridge the semantic gap, we used manually labeled data to greatly improve the effectiveness and efficiency of the pre-training and fine-tuning stages of the DBN training. The resulting framework is shown to be robust to sometimes unreliable inputs (e.g., imprecise detections of human parts and objects), and outperforms the state-of-the-art approaches.Comment: 6 pages, 8 figures, ICME 201

    Loss Guided Activation for Action Recognition in Still Images

    Full text link
    One significant problem of deep-learning based human action recognition is that it can be easily misled by the presence of irrelevant objects or backgrounds. Existing methods commonly address this problem by employing bounding boxes on the target humans as part of the input, in both training and testing stages. This requirement of bounding boxes as part of the input is needed to enable the methods to ignore irrelevant contexts and extract only human features. However, we consider this solution is inefficient, since the bounding boxes might not be available. Hence, instead of using a person bounding box as an input, we introduce a human-mask loss to automatically guide the activations of the feature maps to the target human who is performing the action, and hence suppress the activations of misleading contexts. We propose a multi-task deep learning method that jointly predicts the human action class and human location heatmap. Extensive experiments demonstrate our approach is more robust compared to the baseline methods under the presence of irrelevant misleading contexts. Our method achieves 94.06\% and 40.65\% (in terms of mAP) on Stanford40 and MPII dataset respectively, which are 3.14\% and 12.6\% relative improvements over the best results reported in the literature, and thus set new state-of-the-art results. Additionally, unlike some existing methods, we eliminate the requirement of using a person bounding box as an input during testing.Comment: Accepted to appear in ACCV 201
    corecore