4 research outputs found

    Anti-spoofing Methods for Automatic SpeakerVerification System

    Full text link
    Growing interest in automatic speaker verification (ASV)systems has lead to significant quality improvement of spoofing attackson them. Many research works confirm that despite the low equal er-ror rate (EER) ASV systems are still vulnerable to spoofing attacks. Inthis work we overview different acoustic feature spaces and classifiersto determine reliable and robust countermeasures against spoofing at-tacks. We compared several spoofing detection systems, presented so far,on the development and evaluation datasets of the Automatic SpeakerVerification Spoofing and Countermeasures (ASVspoof) Challenge 2015.Experimental results presented in this paper demonstrate that the useof magnitude and phase information combination provides a substantialinput into the efficiency of the spoofing detection systems. Also wavelet-based features show impressive results in terms of equal error rate. Inour overview we compare spoofing performance for systems based on dif-ferent classifiers. Comparison results demonstrate that the linear SVMclassifier outperforms the conventional GMM approach. However, manyresearchers inspired by the great success of deep neural networks (DNN)approaches in the automatic speech recognition, applied DNN in thespoofing detection task and obtained quite low EER for known and un-known type of spoofing attacks.Comment: 12 pages, 0 figures, published in Springer Communications in Computer and Information Science (CCIS) vol. 66

    Spoofing Detection in Automatic Speaker Verification Systems Using DNN Classifiers and Dynamic Acoustic Features

    Get PDF

    Presentation attack detection in voice biometrics

    Get PDF
    Recent years have shown an increase in both the accuracy of biometric systems and their practical use. The application of biometrics is becoming widespread with fingerprint sensors in smartphones, automatic face recognition in social networks and video-based applications, and speaker recognition in phone banking and other phone-based services. The popularization of the biometric systems, however, exposed their major flaw --- high vulnerability to spoofing attacks. A fingerprint sensor can be easily tricked with a simple glue-made mold, a face recognition system can be accessed using a printed photo, and a speaker recognition system can be spoofed with a replay of pre-recorded voice. The ease with which a biometric system can be spoofed demonstrates the importance of developing efficient anti-spoofing systems that can detect both known (conceivable now) and unknown (possible in the future) spoofing attacks. Therefore, it is important to develop mechanisms that can detect such attacks, and it is equally important for these mechanisms to be seamlessly integrated into existing biometric systems for practical and attack-resistant solutions. To be practical, however, an attack detection should have (i) high accuracy, (ii) be well-generalized for different attacks, and (iii) be simple and efficient. One reason for the increasing demand for effective presentation attack detection (PAD) systems is the ease of access to people's biometric data. So often, a potential attacker can almost effortlessly obtain necessary biometric samples from social networks, including facial images, audio and video recordings, and even extract fingerprints from high resolution images. Therefore, various privacy protection solutions, such as legal privacy requirements and algorithms for obfuscating personal information, e.g., visual privacy filters, as well as, social awareness of threats to privacy can also increase security of personal information and potentially reduce the vulnerability of biometric systems. In this chapter, however, we focus on presentation attacks detection in voice biometrics, i.e., automatic speaker verification (ASV) systems. We discuss vulnerabilities of these systems to presentation attacks (PAs), present different state of the art PAD systems, give the insights into their performances, and discuss the integration of PAD and ASV systems

    Long Term Spectral Statistics for Voice Presentation Attack Detection

    Get PDF
    Automatic speaker verification systems can be spoofed through recorded, synthetic or voice converted speech of target speakers. To make these systems practically viable, the detection of such attacks, referred to as presentation attacks, is of paramount interest. In that direction, this paper investigates two aspects: (a) a novel approach to detect presentation attacks where, unlike conventional approaches, no speech signal related assumptions are made, rather the attacks are detected by computing first order and second order spectral statistics and feeding them to a classifier, and (b) generalization of the presentation attack detection systems across databases. Our investigations on Interspeech 2015 ASVspoof challenge dataset and AVspoof dataset show that, when compared to the approaches based on conventional short-term spectral processing, the proposed approach with a linear discriminative classifier yields a better system, irrespective of whether the spoofed signal is replayed to the microphone or is directly injected into the system software process. Cross-database investigations show that neither the short-term spectral processing based approaches nor the proposed approach yield systems which are able to generalize across databases or methods of attack. Thus, revealing the difficulty of the problem and the need for further resources and research
    corecore