6 research outputs found

    New Developments in a Two-criteria Approach to Dynamic Power Management in Energy-aware Computer Networks, Journal of Telecommunications and Information Technology, 2016, nr 2

    Get PDF
    In the paper authors continue the development of a model of dynamic power management in energy-aware computer networks, where two criteria: energy consumption and the quality of service are considered. This approach is appropriate when the routing problem with fixed demands is inadmissible. The formulation introducing edge indices is modified and tests on problems of different sizes are performed

    Server Workload Model Identification: Monitoring and Control Tools for Linux, Journal of Telecommunications and Information Technology, 2016, nr 2

    Get PDF
    Server power control in data centers is a coordinated process carefully designed to reach multiple data center management objectives. The main objectives include avoiding power capacity overloads and system overheating, as well as fulfilling service-level agreements (SLAs). In addition to the primary goals, server control process aims to maximize various energy efficiency metrics subject to reliability constraints. Monitoring of data center performance is fundamental for its efficient management. In order to keep track of how well the computing tasks are processed, cluster control systems need to collect accurate measurements of activities of cluster components. This paper presents a brief overview of performance and power consumption monitoring tools available in the Linux systems

    Simultaneous routing and flow rate optimization in energy鈥揳ware computer networks

    No full text
    The issue of energy-aware traffic engineering has become prominent in telecommunications industry in the last years. This paper presents a two-criteria network optimization problem, in which routing and bandwidth allocation are determined jointly, so as to minimize the amount of energy consumed by a telecommunication infrastructure and to satisfy given demands represented by a traffic matrix. A scalarization of the criteria is proposed and the choice of model parameters is discussed in detail. The model of power dissipation as a function of carried traffic in a typical software router is introduced. Then the problem is expressed in a form suitable for the mixed integer quadratic programming (MIQP) solver. The paper is concluded with a set of small, illustrative computational examples. Computed solutions are implemented in a testbed to validate the accuracy of energy consumption models and the correctness of the proposed traffic engineering algorithm

    Simultaneous routing and flow rate optimization in energy-aware computer networks

    No full text
    The issue of energy-aware traffic engineering has become prominent in telecommunications industry in the last years. This paper presents a two-criteria network optimization problem, in which routing and bandwidth allocation are determined jointly, so as to minimize the amount of energy consumed by a telecommunication infrastructure and to satisfy given demands represented by a traffic matrix. A scalarization of the criteria is proposed and the choice of model parameters is discussed in detail. The model of power dissipation as a function of carried traffic in a typical software router is introduced. Then the problem is expressed in a form suitable for the mixed integer quadratic programming (MIQP) solver. The paper is concluded with a set of small, illustrative computational examples. Computed solutions are implemented in a testbed to validate the accuracy of energy consumption models and the correctness of the proposed traffic engineering algorithm

    Simultaneous routing and flow rate optimization in energy鈥揳ware computer networks

    No full text
    The issue of energy-aware traffic engineering has become prominent in telecommunications industry in the last years. This paper presents a two-criteria network optimization problem, in which routing and bandwidth allocation are determined jointly, so as to minimize the amount of energy consumed by a telecommunication infrastructure and to satisfy given demands represented by a traffic matrix. A scalarization of the criteria is proposed and the choice of model parameters is discussed in detail. The model of power dissipation as a function of carried traffic in a typical software router is introduced. Then the problem is expressed in a form suitable for the mixed integer quadratic programming (MIQP) solver. The paper is concluded with a set of small, illustrative computational examples. Computed solutions are implemented in a testbed to validate the accuracy of energy consumption models and the correctness of the proposed traffic engineering algorithm

    JTIT

    Get PDF
    kwartalni
    corecore