120 research outputs found

    Variability-Aware VLSI Design Automation For Nanoscale Technologies

    Get PDF
    As technology scaling enters the nanometer regime, design of large scale ICs gets more challenging due to shrinking feature sizes and increasing design complexity. Aggressive scaling causes significant degradation in reliability, increased susceptibility to fabrication and environmental randomness and increased dynamic and leakage power dissipation. In this work, we investigate these scaling issues in large scale integrated systems. This dissertation proposes to develop variability-aware design methodologies by proposing design analysis, design-time optimization, post-silicon tunability and runtime-adaptivity based optimization techniques for handling variability. We discuss our research in the area of variability-aware analysis, specifically focusing on the problem of statistical timing analysis. The first technique presents the concept of error budgeting that achieves significant runtime speedups during statistical timing analysis. The second work presents a general framework for non-linear non-Gaussian statistical timing analysis considering correlations. Further, we present our work on design-time optimization schemes that are applicable during physical synthesis. Firstly, we present a buffer insertion technique that considers wire-length uncertainty and proposes algorithms to perform probabilistic buffer insertion. Secondly, we present a stochastic optimization framework based on Monte-Carlo technique considering fabrication variability. This optimization framework can be applied to problems that can be modeled as linear programs without without imposing any assumptions on the nature of the variability. Subsequently, we present our work on post-silicon tunability based design optimization. This work presents a design management framework that can be used to balance the effort spent on pre-silicon (through gate sizing) and post-silicon optimization (through tunable clock-tree buffers) while maximizing the yield gains. Lastly, we present our work on variability-aware runtime optimization techniques. We look at the problem of runtime supply voltage scaling for dynamic power optimization, and propose a framework to consider the impact of variability on the reliability of such designs. We propose a probabilistic design synthesis technique where reliability of the design is a primary optimization metric

    CAD methodologies for low power and reliable 3D ICs

    Get PDF
    The main objective of this dissertation is to explore and develop computer-aided-design (CAD) methodologies and optimization techniques for reliability, timing performance, and power consumption of through-silicon-via(TSV)-based and monolithic 3D IC designs. The 3D IC technology is a promising answer to the device scaling and interconnect problems that industry faces today. Yet, since multiple dies are stacked vertically in 3D ICs, new problems arise such as thermal, power delivery, and so on. New physical design methodologies and optimization techniques should be developed to address the problems and exploit the design freedom in 3D ICs. Towards the objective, this dissertation includes four research projects. The first project is on the co-optimization of traditional design metrics and reliability metrics for 3D ICs. It is well known that heat removal and power delivery are two major reliability concerns in 3D ICs. To alleviate thermal problem, two possible solutions have been proposed: thermal-through-silicon-vias (T-TSVs) and micro-fluidic-channel (MFC) based cooling. For power delivery, a complex power distribution network is required to deliver currents reliably to all parts of the 3D IC while suppressing the power supply noise to an acceptable level. However, these thermal and power networks pose major challenges in signal routability and congestion. In this project, a co-optimization methodology for signal, power, and thermal interconnects in 3D ICs is presented. The goal of the proposed approach is to improve signal, thermal, and power noise metrics and to provide fast and accurate design space explorations for early design stages. The second project is a study on 3D IC partition. For a 3D IC, the target circuit needs to be partitioned into multiple parts then mapped onto the dies. The partition style impacts design quality such as footprint, wirelength, timing, and so on. In this project, the design methodologies of 3D ICs with different partition styles are demonstrated. For the LEON3 multi-core microprocessor, three partitioning styles are compared: core-level, block-level, and gate-level. The design methodologies for such partitioning styles and their implications on the physical layout are discussed. Then, to perform timing optimizations for 3D ICs, two timing constraint generation methods are demonstrated that lead to different design quality. The third project is on the buffer insertion for timing optimization of 3D ICs. For high performance 3D ICs, it is crucial to perform thorough timing optimizations. Among timing optimization techniques, buffer insertion is known to be the most effective way. The TSVs have a large parasitic capacitance that increases the signal slew and the delay on the downstream. In this project, a slew-aware buffer insertion algorithm is developed that handles full 3D nets and considers TSV parasitics and slew effects on delay. Compared with the well-known van Ginneken algorithm and a commercial tool, the proposed algorithm finds buffering solutions with lower delay values and acceptable runtime overhead. The last project is on the ultra-high-density logic designs for monolithic 3D ICs. The nano-scale 3D interconnects available in monolithic 3D IC technology enable ultra-high-density device integration at the individual transistor-level. The benefits and challenges of monolithic 3D integration technology for logic designs are investigated. First, a 3D standard cell library for transistor-level monolithic 3D ICs is built and their timing and power behavior are characterized. Then, various interconnect options for monolithic 3D ICs that improve design quality are explored. Next, timing-closed, full-chip GDSII layouts are built and iso-performance power comparisons with 2D IC designs are performed. Important design metrics such as area, wirelength, timing, and power consumption are compared among transistor-level monolithic 3D, gate-level monolithic 3D, TSV-based 3D, and traditional 2D designs.PhDCommittee Chair: Lim, Sung Kyu; Committee Member: Bakir, Muhannad; Committee Member: Kim, Hyesoon; Committee Member: Lee, Hsien-Hsin; Committee Member: Mukhopadhyay, Saiba

    NASA Tech Briefs, February 1993

    Get PDF
    Topics include: Communication Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    VLSI Implementation of a Spiking Neural Network

    Get PDF
    Im Rahmen der vorliegenden Arbeit wurden Konzepte und dedizierte Hardware entwickelt, die es erlauben, großskalige pulsgekoppelte neuronale Netze in Hardware zu realisieren. Die Arbeit basiert auf dem analogen VLSI-Modell eines pulsgekoppelten neuronalen Netzes, welches synaptische Plastizität (STPD) in jeder einzelnen Synapse beinhaltet. Das Modell arbeitet analog mit einem Geschwindigkeitszuwachs von bis zu 10^5 im Vergleich zur biologischen Echtzeit. Aktionspotentiale werden als digitale Ereignisse übertragen. Inhalt dieser Arbeit sind vornehmlich die digitale Hardware und die Übertragung dieser Ereignisse. Das analoge VLSI-Modell wurde in Verbindung mit Digitallogik, welche zur Verarbeitung neuronaler Ereignisse und zu Konfigurationszwecken dient, in einen gemischt analog-digitalen ASIC integriert, wobei zu diesem Zweck ein automatisierter Arbeitsablauf entwickelt wurde. Außerdem wurde eine entsprechende Kontrolleinheit in programmierbarer Logik implementiert und eine Hardware-Plattform zum parallelen Betrieb mehrerer neuronaler Netzwerkchips vorgestellt. Um das VLSI-Modell auf mehrere neuronale Netzwerkchips ausdehnen zu können, wurde ein Routing-Algorithmus entwickelt, welcher die Übertragung von Ereignissen zwischen Neuronen und Synapsen auf unterschiedlichen Chips ermöglicht. Die zeitlich korrekte Übertragung der Ereignisse, welche eine zwingende Bedingung für das Funktionieren von Plastizitätsmechanismen ist, wird durch diesen Algorithmus sichergestellt. Die Funktionalität des Algorithmus wird mittels Simulationen verifiziert. Weiterhin wird die korrekte Realisierung des gemischt analog-digitalen ASIC in Verbindung mit dem zugehörigen Hardware-System demonstriert und die Durchführbarkeit biologisch realistischer Experimente gezeigt. Das vorgestellte großskalige physikalische Modell eines neuronalen Netzwerks wird aufgrund seiner schnellen und parallelen Arbeitsweise für Experimentierzwecke in den Neurowissenschaften einsetzbar sein. Als Ergänzung zu numerischen Simulationen bietet es vor allem die Möglichkeit der intuitiven und umfangreichen Suche nach geeigneten Modellparametern

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    Dynamic modeling of multi stage flash (MSF) desalination plant

    Get PDF
    The world population is increasing at a very rapid rate while the natural water resources remain constant. During the past decades industrial desalination (reverse osmosis (RO) and multistage flash desalination (MSF)) became a viable, economical, and sustainable source of fresh water throughout the world. In the MSF units, the flashing of seawater involves formation of pure vapour, which flows through a wire mesh demister to remove the entrained brine droplets and then condenses into product water. The study presented in this thesis is motivated by the absence of detailed modelling and analysis of the dynamics of the MSF process and the demister. A detailed dynamic model can be used in design, control, startup/shutdown and troubleshooting. Most of the previous studies on MSF plant focused on model development and presented limited amount of performance data without any validation against plant data. Literature models of the MSF demister are either empirical or semi-empirical. This motivated use of a computational fluid dynamics (CFD) software to design a new demister that will reduce the pressure/temperature drop in the vapour stream without affecting the separation efficiency of brine droplets and allows the optimal design of complete MSF units. Lumped parameter dynamic models were developed for the once through (MSF-OT) and the brine circulation (MSF-BC) processes. The models were coded using the gPROMS modelling program. The model predictions for both MSF-OT and MSF-BC in steady state and dynamic conditions showed good agreement against data from existing MSF plants with an error less than 1.5%. Dynamic analysis was made to study plant performance upon making step variations in system manipulated variables and identify stable operating regimes. New stable operating regimes were reached upon changing the cooling water flow rate by + 15% and increasing the recycle brine flow rate by 15% and decreasing it by 7%. This was not the case for the steam temperature where its variation was limited to + 2-3 %. This behavior is consistent with the actual plant data. The FLUENT software was used to model the MSF demister using different combinations of Eulerian and Lagrangian approaches to model the vapour and the brine droplets. This provided the open literature with novel and new methodologies for design and simulation of the MSF demister using CFD. A new demister design was made upon varying the wire diameter. This led to an efficient design with low pressure drop and high separation efficiency. This design was used in the MSF/gPROMS model to predict its effect on the heat transfer area. The new design provided reductions of 3-39% in the condenser heat transfer area without affecting dynamic performance. Since the tubing system accounts for almost 70% of the capital cost, then this would reduce the plant capital cost and product unit cost. The modelling approach presented in this thesis enables design of thermal desalination units to determine optimal heat transfer area and optimized operating conditions

    The CMS experiment at the CERN LHC

    Get PDF
    The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and leadlead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 1034 cm-2s-1 (1027 cm-2s-1). At the core of the CMS detector sits a high-magnetic field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4π solid angle. Forward sampling calorimeters extend the pseudorapidity coverage to high values (|η| ≤ 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t
    corecore