1,437 research outputs found

    Full-Duplex Radio for Uplink/Downlink Transmission with Spatial Randomness

    Full text link
    We consider a wireless system with a full-duplex (FD) access point (AP) that transmits to a scheduled user in the downlink (DL) channel, while receiving data from an user in the uplink (UL) channel at the same time on the same frequency. In this system, loopback interference (LI) at the AP and inter user interference between the uplink (UL) user and downlink (DL) user can cause performance degradation. In order to characterize the effects of LI and inter user interference, we derive closed-form expressions for the outage probability and achievable sum rate of the system. In addition an asymptotic analysis that reveals insights into the system behavior and performance degradation is presented. Our results indicate that under certain conditions, FD transmissions yield performance gains over half-duplex (HD) mode of operation.Comment: Accepted for the IEEE International Conference on Communications (ICC 2015

    Joint Design of Multi-Tap Analog Cancellation and Digital Beamforming for Reduced Complexity Full Duplex MIMO Systems

    Full text link
    Incorporating full duplex operation in Multiple Input Multiple Output (MIMO) systems provides the potential of boosting throughput performance. However, the hardware complexity of the analog self-interference canceller scales with the number of transmit and receive antennas, thus exploiting the benefits of analog cancellation becomes impractical for full duplex MIMO transceivers. In this paper, we present a novel architecture for the analog canceller comprising of reduced number of taps (tap refers to a line of fixed delay and variable phase shifter and attenuator) and simple multiplexers for efficient signal routing among the transmit and receive radio frequency chains. In contrast to the available analog cancellation architectures, the values for each tap and the configuration of the multiplexers are jointly designed with the digital beamforming filters according to certain performance objectives. Focusing on a narrowband flat fading channel model as an example, we present a general optimization framework for the joint design of analog cancellation and digital beamforming. We also detail a particular optimization objective together with its derived solution for the latter architectural components. Representative computer simulation results demonstrate the superiority of the proposed low complexity full duplex MIMO system over lately available ones.Comment: 8 pages, 4 figures, IEEE ICC 201

    Outage Analysis of Full-Duplex Architectures in Cellular Networks

    Full text link
    The implementation of full-duplex (FD) radio in wireless communications is a potential approach for achieving higher spectral efficiency. A possible application is its employment in the next generation of cellular networks. However, the performance of large-scale FD multiuser networks is an area mostly unexplored. Most of the related work focuses on the performance analysis of small-scale networks or on loop interference cancellation schemes. In this paper, we derive the outage probability performance of large-scale FD cellular networks in the context of two architectures: two-node and three-node. We show how the performance is affected with respect to the model's parameters and provide a comparison between the two architectures.Comment: to appear in Proc. IEEE VTC 2015 Spring, Glasgo
    • …
    corecore