4,556 research outputs found

    Comparison of ERBS orbit determination accuracy using batch least-squares and sequential methods

    Get PDF
    The Flight Dynamics Div. (FDD) at NASA-Goddard commissioned a study to develop the Real Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination of spacecraft on a DOS based personal computer (PC). An overview is presented of RTOD/E capabilities and the results are presented of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOS/E on a PC with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. RTOD/E was used to perform sequential orbit determination for the Earth Radiation Budget Satellite (ERBS), and the Goddard Trajectory Determination System (GTDS) was used to perform the batch least squares orbit determination. The estimated ERBS ephemerides were obtained for the Aug. 16 to 22, 1989, timeframe, during which intensive TDRSS tracking data for ERBS were available. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for ERBS; the solution differences were less than 40 meters after the filter had reached steady state

    Low thrust orbit determination program

    Get PDF
    Logical flow and guidelines are provided for the construction of a low thrust orbit determination computer program. The program, tentatively called FRACAS (filter response analysis for continuously accelerating spacecraft), is capable of generating a reference low thrust trajectory, performing a linear covariance analysis of guidance and navigation processes, and analyzing trajectory nonlinearities in Monte Carlo fashion. The choice of trajectory, guidance and navigation models has been made after extensive literature surveys and investigation of previous software. A key part of program design relied upon experience gained in developing and using Martin Marietta Aerospace programs: TOPSEP (Targeting/Optimization for Solar Electric Propulsion), GODSEP (Guidance and Orbit Determination for SEP) and SIMSEP (Simulation of SEP)

    Improved solution accuracy for TDRSS-based TOPEX/Poseidon orbit determination

    Get PDF
    Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using a batch-least-squares estimator available in the Goddard Trajectory Determination System (GTDS) and an extended Kalman filter estimation system to process Tracking and Data Relay Satellite (TDRS) System (TDRSS) measurements. GTDS is the operational orbit determination system used by the FDD in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. The extended Kalman filter was implemented in an orbit determination analysis prototype system, closely related to the Real-Time Orbit Determination System/Enhanced (RTOD/E) system. In addition, the Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generated an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the geodynamics (GEODYN) orbit determination system with laser ranging and Doppler Orbitography and Radiopositioning integrated by satellite (DORIS) tracking measurements. The TOPEX/Poseidon trajectories were estimated for November 7 through November 11, 1992, the timeframe under study. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch-least-squares solutions were assessed based on the solution residuals, while the sequential solutions were assessed based on primarily the estimated covariances. The batch-least-squares and sequential orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 2 meters for the batch-least-squares and less than 13 meters for the sequential estimation solutions. After the sequential estimation solutions were processed with a smoother algorithm, position differences with POD orbit solutions of less than 7 meters were obtained. The differences among the POD, GTDS, and filter/smoother solutions can be traced to differences in modeling and tracking data types, which are being analyzed in detail

    Outer planet mission guidance and navigation for spinning spacecraft

    Get PDF
    The orbit determination accuracies, maneuver results, and navigation system specification for spinning Pioneer planetary probe missions are analyzed to aid in determining the feasibility of deploying probes into the atmospheres of the outer planets. Radio-only navigation suffices for a direct Saturn mission and the Jupiter flyby of a Jupiter/Uranus mission. Saturn ephemeris errors (1000 km) plus rigid entry constraints at Uranus result in very high velocity requirements (140 m/sec) on the final legs of the Saturn/Uranus and Jupiter/Uranus missions if only Earth-based tracking is employed. The capabilities of a conceptual V-slit sensor are assessed to supplement radio tracking by star/satellite observations. By processing the optical measurements with a batch filter, entry conditions at Uranus can be controlled to acceptable mission-defined levels (+ or - 3 deg) and the Saturn-Uranus leg velocity requirements can be reduced by a factor of 6 (from 139 to 23 m/sec) if nominal specified accuracies of the sensor can be realized

    Precise estimation of tropospheric path delays with GPS techniques

    Get PDF
    Tropospheric path delays are a major source of error in deep space tracking. However, the tropospheric-induced delay at tracking sites can be calibrated using measurements of Global Positioning System (GPS) satellites. A series of experiments has demonstrated the high sensitivity of GPS to tropospheric delays. A variety of tests and comparisons indicates that current accuracy of the GPS zenith tropospheric delay estimates is better than 1-cm root-mean-square over many hours, sampled continuously at intervals of six minutes. These results are consistent with expectations from covariance analyses. The covariance analyses also indicate that by the mid-1990s, when the GPS constellation is complete and the Deep Space Network is equipped with advanced GPS receivers, zenith tropospheric delay accuracy with GPS will improve further to 0.5 cm or better

    Guidance, flight mechanics and trajectory optimization. Volume 11 - Guidance equations for orbital operations

    Get PDF
    Mathematical formulation of guidance equations and solutions for orbital space mission

    Adaptive filtering applications to satellite navigation

    Get PDF
    PhDDifferential Global Navigation Satellite Systems employ the extended Kalman filter to estimate the reference position error. High accuracy integrated navigation systems have the ability to mix traditional inertial sensor outputs with navigation satellite based position information and can be used to develop high accuracy landing systems for aircraft. This thesis considers a host of estimation problems associated with aircraft navigation systems that currently rely on the extended Kalman filter and proposes to use a nonlinear estimation algorithm, the unscented Kalman filter (UKF) that does not rely on Jacobian linearisation. The objective is to develop high accuracy positioning algorithms to facilitate the use of GNSS or DGNSS for aircraft landing. Firstly, the position error in a typical satellite navigation problem depends on the accuracy of the orbital ephemeris. The thesis presents results for the prediction of the orbital ephemeris from a customised navigation satellite receiver's data message. The SDP4/SDP8 algorithms and suitable noise models are used to establish the measured data. Secondly, the differential station common mode position error not including the contribution due to errors in the ephemeris is usually estimated by employing an EKF. The thesis then considers the application of the UKF to the mixing problem, so as to facilitate the mixing of measurements made by either a GNSS or a DGNSS and a variety of low cost or high-precision INS sensors. Precise, adaptive UKFs and a suitable nonlinear propagation method are used to estimate the orbit ephemeris and the differential position and the navigation filter mixing errors. The results indicate the method is particularly suitable for estimating the orbit ephemeris of navigation satellites and the differential position and navigation filter mixing errors, thus facilitating interoperable DGNSS operation for aircraft landing

    Flight Mechanics/Estimation Theory Symposium 1995

    Get PDF
    This conference publication includes 41 papers and abstracts presented at the Flight Mechanics/ Estimation Theory Symposium on May 16-18, 1995. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers

    The application of Skylab altimetry to marine geoid determination

    Get PDF
    The author had identified the following significant results. The major results can be divided broadly into two groups. One group is concerned with the effects of errors inherent in the various input data, such as the orbit emphemeris, a priori geoid etc. The other consists of the results of the actual analysis of the data from the Skylab EREP passes 4, 6, 7, and 9. Results from the first group were obtained from the analysis of some preliminary data from EREP pass 9 mode 5. The second group of results consists of a set of recovered bias terms for each of the submodes of observations and a set of nine altimetry geoid profiles corresponding to the various passes and modes. Along with each of these profiles, the a priori geoid, gravity anomaly, and the bathymetric data profiles are also presented for easy comparison

    Orbit Estimation Algorithms for a Microsatellite Rendezvous with a Non-Cooperative Target

    Get PDF
    This study investigated the minimum requirements to establish a satellite tracking system architecture for a microsatellite to rendezvous with a non-cooperative target satellite. A prototype optical tracking system was reviewed with emphasis on a proposed tactical employment that could be used by technologically unsophisticated state or non-state adversaries. With the tracking system architecture selected, simulated tracking data was processed with a Non-Linear Least Squares batch orbit estimation algorithm and a Bayes sequential orbit determination filter to update the target satellite\u27s state vector
    • …
    corecore