256 research outputs found

    On simultaneous diagonalization via congruence of real symmetric matrices

    Full text link
    Simultaneous diagonalization via congruence (SDC) for more than two symmetric matrices has been a long standing problem. So far, the best attempt either relies on the existence of a semidefinite matrix pencil or casts on the complex field. The problem now is resolved without any assumption. We first propose necessary and sufficient conditions for SDC in case that at least one of the matrices is nonsingular. Otherwise, we show that the singular matrices can be decomposed into diagonal blocks such that the SDC of given matrices becomes equivalently the SDC of the sub-matrices. Most importantly, the sub-matrices now contain at least one nonsingular matrix. Applications to simplify some difficult optimization problems with the presence of SDC are mentioned

    An SDP Approach For Solving Quadratic Fractional Programming Problems

    Full text link
    This paper considers a fractional programming problem (P) which minimizes a ratio of quadratic functions subject to a two-sided quadratic constraint. As is well-known, the fractional objective function can be replaced by a parametric family of quadratic functions, which makes (P) highly related to, but more difficult than a single quadratic programming problem subject to a similar constraint set. The task is to find the optimal parameter λ∗\lambda^* and then look for the optimal solution if λ∗\lambda^* is attained. Contrasted with the classical Dinkelbach method that iterates over the parameter, we propose a suitable constraint qualification under which a new version of the S-lemma with an equality can be proved so as to compute λ∗\lambda^* directly via an exact SDP relaxation. When the constraint set of (P) is degenerated to become an one-sided inequality, the same SDP approach can be applied to solve (P) {\it without any condition}. We observe that the difference between a two-sided problem and an one-sided problem lies in the fact that the S-lemma with an equality does not have a natural Slater point to hold, which makes the former essentially more difficult than the latter. This work does not, either, assume the existence of a positive-definite linear combination of the quadratic terms (also known as the dual Slater condition, or a positive-definite matrix pencil), our result thus provides a novel extension to the so-called "hard case" of the generalized trust region subproblem subject to the upper and the lower level set of a quadratic function.Comment: 26 page
    • …
    corecore