67 research outputs found

    The many faces of planarity : matching, augmentation, and embedding algorithms for planar graphs

    Get PDF

    Simultaneous Embeddings with Few Bends and Crossings

    Full text link
    A simultaneous embedding with fixed edges (SEFE) of two planar graphs RR and BB is a pair of plane drawings of RR and BB that coincide when restricted to the common vertices and edges of RR and BB. We show that whenever RR and BB admit a SEFE, they also admit a SEFE in which every edge is a polygonal curve with few bends and every pair of edges has few crossings. Specifically: (1) if RR and BB are trees then one bend per edge and four crossings per edge pair suffice (and one bend per edge is sometimes necessary), (2) if RR is a planar graph and BB is a tree then six bends per edge and eight crossings per edge pair suffice, and (3) if RR and BB are planar graphs then six bends per edge and sixteen crossings per edge pair suffice. Our results improve on a paper by Grilli et al. (GD'14), which proves that nine bends per edge suffice, and on a paper by Chan et al. (GD'14), which proves that twenty-four crossings per edge pair suffice.Comment: Full version of the paper "Simultaneous Embeddings with Few Bends and Crossings" accepted at GD '1

    B0_0-VPG Representation of AT-free Outerplanar Graphs

    Full text link
    B0_0-VPG graphs are intersection graphs of axis-parallel line segments in the plane. In this paper, we show that all AT-free outerplanar graphs are B0_0-VPG. We first prove that every AT-free outerplanar graph is an induced subgraph of a biconnected outerpath (biconnected outerplanar graphs whose weak dual is a path) and then we design a B0_0-VPG drawing procedure for biconnected outerpaths. Our proofs are constructive and give a polynomial time B0_0-VPG drawing algorithm for the class. We also characterize all subgraphs of biconnected outerpaths and name this graph class "linear outerplanar". This class is a proper superclass of AT-free outerplanar graphs and a proper subclass of outerplanar graphs with pathwidth at most 2. It turns out that every graph in this class can be realized both as an induced subgraph and as a spanning subgraph of (different) biconnected outerpaths.Comment: A preliminary version, which did not contain the characterization of linear outerplanar graphs (Section 3), was presented in the 8th8^{th} International Conference on Algorithms and Discrete Applied Mathematics (CALDAM) 2022. The definition of linear outerplanar graphs in this paper differs from that in the preliminary version and hence Section 4 is ne

    Planarity Variants for Directed Graphs

    Get PDF

    SPQR-tree-like embedding representation for level planarity

    Get PDF
    An SPQR-tree is a data structure that efficiently represents all planar embeddings of a connected planar graph. It is a key tool in a number of constrained planarity testing algorithms, which seek a planar embedding of a graph subject to some given set of constraints. We develop an SPQR-tree-like data structure that represents all level-planar embeddings of a biconnected level graph with a single source, called the LP-tree, and give an algorithm to compute it in linear time. Moreover, we show that LP-trees can be used to adapt three constrained planarity algorithms to the level-planar case by using LP-trees as a drop-in replacement for SPQR-trees

    Advancements on SEFE and Partitioned Book Embedding Problems

    Full text link
    In this work we investigate the complexity of some problems related to the {\em Simultaneous Embedding with Fixed Edges} (SEFE) of kk planar graphs and the PARTITIONED kk-PAGE BOOK EMBEDDING (PBE-kk) problems, which are known to be equivalent under certain conditions. While the computational complexity of SEFE for k=2k=2 is still a central open question in Graph Drawing, the problem is NP-complete for k≥3k \geq 3 [Gassner {\em et al.}, WG '06], even if the intersection graph is the same for each pair of graphs ({\em sunflower intersection}) [Schaefer, JGAA (2013)]. We improve on these results by proving that SEFE with k≥3k \geq 3 and sunflower intersection is NP-complete even when the intersection graph is a tree and all the input graphs are biconnected. Also, we prove NP-completeness for k≥3k \geq 3 of problem PBE-kk and of problem PARTITIONED T-COHERENT kk-PAGE BOOK EMBEDDING (PTBE-kk) - that is the generalization of PBE-kk in which the ordering of the vertices on the spine is constrained by a tree TT - even when two input graphs are biconnected. Further, we provide a linear-time algorithm for PTBE-kk when k−1k-1 pages are assigned a connected graph. Finally, we prove that the problem of maximizing the number of edges that are drawn the same in a SEFE of two graphs is NP-complete in several restricted settings ({\em optimization version of SEFE}, Open Problem 99, Chapter 1111 of the Handbook of Graph Drawing and Visualization).Comment: 29 pages, 10 figures, extended version of 'On Some NP-complete SEFE Problems' (Eighth International Workshop on Algorithms and Computation, 2014

    New Approaches to Classic Graph-Embedding Problems - Orthogonal Drawings & Constrained Planarity

    Get PDF
    Drawings of graphs are often used to represent a given data set in a human-readable way. In this thesis, we consider different classic algorithmic problems that arise when automatically generating graph drawings. More specifically, we solve some open problems in the context of orthogonal drawings and advance the current state of research on the problems clustered planarity and simultaneous planarity
    • …
    corecore