4 research outputs found

    Performance analysis of wavelength multiplexed SAC OCDMA codes in beat noise mitigation in SAC OCDMA systems

    Get PDF
    In this paper we investigate the use of wavelength multiplexed spectral amplitude coding (WM SAC) codes in beat noise mitigation in coherent source SAC OCDMA systems. A WM SAC code is a low weight SAC code, where the whole code structure is repeated diagonally (once or more) in the wavelength domain to achieve the same cardinality as a higher weight SAC code. Results show that for highly populated networks, the WM SAC codes provide better performance than SAC codes. However, for small number of active users the situation is reversed. Apart from their promising improvement in performance, these codes are more flexible and impose less complexity on the system design than their SAC counterparts

    Co-channel interference reduction in Optical Code Division Multiple Access systems

    Get PDF
    In this thesis few new code sets and a multi-user interference (MUI) cancellation scheme have been proposed for Optical Code Division Multiple Access (OCDMA) systems, which can be employed in the next generation of global communication networks to enhance their existing systems’ performance dramatically. The initial evaluation of the proposed code sets shows that their implementation improves the performance, decreases the BER and increases security considerably. Also the proposed MUI cancellation scheme totally removes all the cross-talk and interference between the active users within the network. These novel schemes and codes can be easily implemented in the optical packet switched networks. Optical switching has the ability of bandwidth manipulation at the wavelength level (e.g. with optical circuit/packet/burst switching); the capability to accommodate a wide range of traffic distributions, and also to make dynamic resource reservations possible. This thesis first gives a brief overview of co-channel interference reduction in OCDMA networks, then proposes two novel code sets, Uniform Cross-Correlation Modified Prime Code (UC-MPC) and Transposed UC-MPC (T-UCMPC), along with their evaluation and analysis in various systems, including IP routing over an OCDMA network. Thereafter, the new MUI cancellation scheme is proposed and then the proposed code sets and the MUI cancellation scheme are implemented and analysed in a laboratory-based experimental test bed. Finally the conclusion of this research is discussed

    Fiber-optic code division multiple access : multi-class optical orthogonal codes, optical power control, and polarization encoding

    Get PDF
    Ever since the mid- 1980s when the single-mode fiber-optic media were believed to become the main highways of future telecommunications networks for transporting high-volume high-quality multipurpose information, the need for all-optical multi-access networking became important. An all-optical multi-access network is a collection of multiple nodes where the interconnection among various nodes is via single- or multi-mode fiber optics and for which they perform all their essential signal processing requirements such as switching, add-drop, multiplexing/demultiplexing and amplification in the optical domain. Optical CDMA networking is one possible technique that allows multiple users in local area networks to access the same fiber channel asynchronously with no delay or scheduling. Optical CDMA networks are not without their own problems. Search for codes suitable to the optical domain is one of the important topics addressed in the literature on optical CDMA. Existing codes developed in the late 80's are limited to single class traffic or can support multiclass traffic but with restrictions on code lengths and weights. Also the number of generated codes is severely limited due to orthogonality issues. In this thesis, we pay particular attention to propose new codes that can support multiclass traffic with arbitrary code weights and lengths. Therefore, data sources with varying traffic demands can be accommodated by optical CDMA networks using the proposed codes. We also present a simple generation technique for the proposed multiclass codes and analyze their performance. The number of users supported by the proposed multiclass codes will be limited since it is an extension of existing code designs with such limitation. We then propose the use of polarization dimension in order to double the number of supported users. On the other hand, incoherent optical CDMA systems are considered as positive systems meaning that only unipolar codes can be considered for such systems. Therefore, multiple access interference will be quite high in optical CDMA due to the nature of incoherent power detection. Reducing the effect of the interference on the performance of optical CDMA is an important topic. We propose the use of power control to decrease the effects of interference in optical star networks in which users' fiber lengths and data rates are not equal. We consider the case of optically amplified network with amplifier noise as the main source. We then elaborate by considering the nonlinearity in the photodetection process and propose the use of an iterative algorithm to find the solution of the non-linear optical power control problem. Finally, we propose an optical CDMA system based on polarization encoding. Since the encoding is performed in the spatial domain, therefore, positive and negative levels can be realized. This approach leads to increasing the number of supported users of optical CDMA by the use of known codes, such as Gold and Hadamard codes, with enhanced performance.reviewe

    Simulation and experimental demonstration of coherent OCDMA using spectral line pairing and heterodyne detection

    No full text
    corecore