1,141 research outputs found

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip

    FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series

    Full text link
    With the evolving technology in CMOS integration, new classes of 2D-imaging detectors have recently become available. In particular, single photon avalanche diode (SPAD) arrays allow detection of single photons at high acquisition rates (\geq 100 kfps), which is about two orders of magnitude higher than with currently available cameras. Here we demonstrate the use of a SPAD array for imaging fluorescence correlation spectroscopy (imFCS), a tool to create 2D maps of the dynamics of fluorescent molecules inside living cells. Time-dependent fluorescence fluctuations, due to fluorophores entering and leaving the observed pixels, are evaluated by means of autocorrelation analysis. The multi-{\tau} correlation algorithm is an appropriate choice, as it does not rely on the full data set to be held in memory. Thus, this algorithm can be efficiently implemented in custom logic. We describe a new implementation for massively parallel multi-{\tau} correlation hardware. Our current implementation can calculate 1024 correlation functions at a resolution of 10{\mu}s in real-time and therefore correlate real-time image streams from high speed single photon cameras with thousands of pixels.Comment: 10 pages, 7 figure

    Non-line-of-sight tracking of people at long range

    Get PDF
    A remote-sensing system that can determine the position of hidden objects has applications in many critical real-life scenarios, such as search and rescue missions and safe autonomous driving. Previous work has shown the ability to range and image objects hidden from the direct line of sight, employing advanced optical imaging technologies aimed at small objects at short range. In this work we demonstrate a long-range tracking system based on single laser illumination and single-pixel single-photon detection. This enables us to track one or more people hidden from view at a stand-off distance of over 50~m. These results pave the way towards next generation LiDAR systems that will reconstruct not only the direct-view scene but also the main elements hidden behind walls or corners

    Frequency-modulated continuous-wave LiDAR compressive depth-mapping

    Get PDF
    We present an inexpensive architecture for converting a frequency-modulated continuous-wave LiDAR system into a compressive-sensing based depth-mapping camera. Instead of raster scanning to obtain depth-maps, compressive sensing is used to significantly reduce the number of measurements. Ideally, our approach requires two difference detectors. % but can operate with only one at the cost of doubling the number of measurments. Due to the large flux entering the detectors, the signal amplification from heterodyne detection, and the effects of background subtraction from compressive sensing, the system can obtain higher signal-to-noise ratios over detector-array based schemes while scanning a scene faster than is possible through raster-scanning. %Moreover, we show how a single total-variation minimization and two fast least-squares minimizations, instead of a single complex nonlinear minimization, can efficiently recover high-resolution depth-maps with minimal computational overhead. Moreover, by efficiently storing only 2m2m data points from m<nm<n measurements of an nn pixel scene, we can easily extract depths by solving only two linear equations with efficient convex-optimization methods
    • …
    corecore