1,071 research outputs found

    On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    Get PDF
    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices

    Saturation routing for asynchronous transfer mode (ATM) networks

    Get PDF
    The main objective of this thesis is to show that saturation routing, often in the past considered inefficient, can in fact be a viable approach to use in many important applications and services over an Asynchronous Transfer Mode (ATM) network. For other applications and services, a hybrid approach (one that partially uses saturation routing) is presented. First, the minimum effects of saturation routing are demonstrated by showing that the ratio, defined as f, of routing overhead cells over information cells is small even for large networks. Second, modeling and simulation and M/D/l queuing analysis techniques are used to show that the overall effect on performance when using saturation routing is not significant over ATM networks. Then saturation routing ATM implementation is also provided, with important extensions to services such as multicast routing. After an analytical comparison, in terms of routing overhead, is made between Saturation Routing and the currently proposed Private Network-Network Interface (PNNI) procedure for ATM routing made by the ATM forum. This comparison is made for networks of different sizes (343node and 2401 -node networks) and different number of hierarchical levels (3 and 4 levels of hierarchy). The results show that the higher the number of levels of hierarchy and the farthest (in terms of hierarchical levels) the source and the destination nodes are from each other, the more advantageous saturation routing becomes. Finally, a set of measures of performance for use by saturation routing (or any routing algorithm), as metrics for routing path selection, is proposed. Among these measures, an innovative new measure of performance derived for measuring quality of service provided to Constant Bit Rate (CBR) users (e.g., such as voice and video users) called the Burst Voice Arrival Lag (BVAL) is described and derived

    Message-Bundle Converting in Intenet Protocol Multicast-Based High Level Architecture Exercises

    Get PDF
    The Department of Defense is pushing for more wide-spread and realistic interactive training simulations which increases the demand on network capacity and resources. While network bandwidth is a measurable resource, packet bandwidth, or the number of packets-per-second (Pk/s) a host can handle, is a shifting commodity. This research analyzes host performance characteristics under varying data loads. The hosts include SGI single and multi-processor systems and Intel Pentium platforms using both Windows 95 and Linux Operating Systems. The networking media covers Ethernet, ATM and FDDI. For the ATM network, both AAL5 and IP over ATM were analyzed. With the data from this research, a system is proposed and developed that takes individual messages and bundles them into multi-message packets. This bundling process overcomes the 5,000 Pk/s limitation, reduces the CPU network handling time and introduces a flow-control mechanism at the local network level. While the idea of bundling messages to increase CPU efficiency is not new, there are no current methods of bundling within the new High Level Architecture (HLA). This proposed process is a novel approach to introduce flow control, priority message handling and increase address space while utilizing bundled data delivery. For traditional network delivery, typical CPU usage from network data varies as a function of traffic load, ranging from 5% at 500 messages-per-second to over 80% at 4,000 messages-per-second. The new bundling process requires 10% at 500 messages-per-second but only increases to 13% at 4,000 messages-per-second

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled

    ICCS network simulation LDRD project final report summary

    Full text link
    • …
    corecore