11 research outputs found

    Analysis of QoS Requirements for e-Health Services and Mapping to Evolved Packet System QoS Classes

    Get PDF
    E-Health services comprise a broad range of healthcare services delivered by using information and communication technology. In order to support existing as well as emerging e-Health services over converged next generation network (NGN) architectures, there is a need for network QoS control mechanisms that meet the often stringent requirements of such services. In this paper, we evaluate the QoS support for e-Health services in the context of the Evolved Packet System (EPS), specified by the Third Generation Partnership Project (3GPP) as a multi-access all-IP NGN. We classify heterogeneous e-Health services based on context and network QoS requirements and propose a mapping to existing 3GPP QoS Class Identifiers (QCIs) that serve as a basis for the class-based QoS concept of the EPS. The proposed mapping aims to provide network operators with guidelines for meeting heterogeneous e-Health service requirements. As an example, we present the QoS requirements for a prototype e-Health service supporting tele-consultation between a patient and a doctor and illustrate the use of the proposed mapping to QCIs in standardized QoS control procedures

    A Review of Service Quality in Integrated Networking System at the Hospital Scenarios

    Get PDF
    Hospital networking system is progressing into a more unified method by connecting technology that utilizes wireless networking technologies into backbone networks. Even though multiple joined circumstances have been acknowledged in the published articles, a common medical facility has not been thoroughly studied and continued to be a difficult subject that is pending. The main challenge faced by networking consultants is the smooth unification of all the components in an all-in-one of healthcare delivery system.  A perfect understanding of the functions of the unified networking is essential for effective designing and utilization of such knowledge in the medical backgrounds. This paper denotes the design and review of unified networking system circumstances in a hospital background. The effect of the types of traffic for example the audio and visual, system loads, size and strength of the network line is studied by a test run. Three pilot test studies have been conducted in radiology A&E and ICU conditions. Each condition shows the requirements for a particular type of traffic which then becomes the definite system behaviour. In the case of a radiology requirement, email and FTP traffic are noted to function effectively within the regular-to-big networking systems. In an A&E situation, VoIP circulations create very little jitters and missing data; it is linked with the prerequisites of QoS. In ICU situations, the video conferencing function downgrades the size of the network. Therefore, a QoS enabled gadget is suggested to minimise the packet delay and data losses. This study gives an overall explanation of wireless telemedicine technology and QoS. The findings of this study are summarised and arranged. Besides, the quality of service which has to be studied through the wireless telemedicine technology has been indicated. The findings of this study will provide a useful perspective in the investigation of QoS in wireless telemedicine technology and serve as a foundation for any individuals who are intrigued in the research of “wireless telemedicine technology for e-healthcare service

    Provisioning Quality of Service of Wireless Telemedicine for E-Health Services: A Review

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation and induces improvement in the quality and efficiency of healthcare services. The scope of study includes several key features of present day e-health applications such as X-ray, ECG, video, diagnosis images and other common applications. Moreover, the provision of Quality of Service (QoS) in terms of specific medical care services in e-health, the priority set for e-health services and the support of QoS in wireless networks and techniques or methods aimed at IEEE 802.11 to secure the provision of QoS has been assessed as well. In e-health, medical services in remote places which include rustic healthcare centres, ships, ambulances and home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health data and the transferring of text, video, sound and images. Given this, a proposal has been made for a multiple service wireless networking with multiple sets of priorities. In relation to the terms of an acceptable QoS level by the customers of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS in medical networking of wireless broadband has paved the way for bandwidth prerequisites and the live transmission or real-time medical applications. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the allocation of bandwidth and the system that controls admittance designed based on IEEE 802.16 especially for e-health services or wireless telemedicine will be discussed in this study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine

    Handover management strategies in LTE-advanced heterogeneous networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Meeting the increasing demand for data due to the proliferation of high-specification mobile devices in the cellular systems has led to the improvement of the Long Term Evolution (LTE) framework to the LTE-Advanced systems. Different aspects such as Massive Multiple-Input Multiple Output (MIMO), Orthogonal Frequency Division Multiple Access (OFDMA), heterogeneous networks and Carrier Aggregation have been considered in the LTE-Advanced to improve the performance of the system. The small cells like the femtocells and the relays play a significant role in increasing the coverage and the capacity of the mobile cellular networks in LTE-Advanced (LTE-A) heterogeneous network. However, the user equipment (UE) are faced with the frequent handover problems in the heterogeneous systems than the homogeneous systems due to the users‟ mobility and densely populated cells. The objective of this research work is to analyse the handover performance in the current LTE/LTE-A network and to propose various handover management strategies to handle the frequent handover problems in the LTE-Advance heterogeneous networks. To achieve this, an event driven simulator using C# was developed based on the 3GPP LTE/LTE-A standard to evaluate the proposed strategies. To start with, admission control which is a major requirement during the handover initiation stage is discussed and this research work has therefore proposed a channel borrowing admission control scheme for the LTE-A networks. With this scheme in place, resources are better utilized and more calls are accepted than in the conventional schemes where the channel borrowing is not applied. Also proposed is an enhanced strategy for the handover management in two-tier femtocell-macrocell networks. The proposed strategy takes into consideration the speed of user and other parameters in other to effectively reduce the frequent and unnecessary handovers, and as well as the ratio of target femtocells in the system. We also consider scenarios such as the one that dominate the future networks where femtocells will be densely populated to handle very heavy traffic. To achieve this, a Call Admission Control (CAC)-based handover management strategy is proposed to manage the handover in dense femtocell-macrocell integration in the LTE-A network. The handover probability, the handover call dropping probability and the call blocking probability are reduced considerably with the proposed strategy. Finally, the handover management for the mobile relays in a moving vehicle is considered (using train as a case study). We propose a group handover strategy where the Mobile Relay Node (MRN) is integrated with a special mobile device called “mdev” to prepare the group information prior to the handover time. This is done to prepare the UE‟s group information and services for timely handover due to the speed of the train. This strategy reduces the number of handovers and the call dropping probability in the moving vehicle.Publications and conferences listed on page iv-v
    corecore