30 research outputs found

    Marine Delay and Disruption Tolerant Networks (MaDTN): Application for Artisanal Fisheries

    Get PDF
    The artisanal fishing activity carried out on the coasts where the production of fish can be exploited is affected by a lack of communication between the vessels in order to provide relevant information related to multiple marine sensor parameters. It is mainly due to the rugged geographic area that causes highly disruptive communication links and in which traditional IP-based communications with transport protocols such as TCP or UDP do not work properly. This paper presents and evaluates a new communications architecture to provide services to marine sensor networks using a disruption tolerant networking (DTN) based solution. We propose a new architecture that takes into account the different vessels densities. We assume a finite sensor population model and a saturated traffic condition where every sensor always has frames to transmit. The performance was evaluated in terms of delivery probabilities, delay and a DTN scenario indicator (DSI) proposed. Through simulations, this paper reveals that Low Density scenery yield greater latency, and more density of nodes has better results. We achieved a successful delivery rate of 74% and a latency of 2 h approximately. Finally indicators shows that high density of nodes is strongly recommended for fishery scenery models

    LSSTCS- A Social-Based DTN Routing in Cooperative Vehicular Sensor Networks

    Get PDF
    As a cooperative information system, vehicles in Vehicular Sensor Networks delivery messages based on collaboration. Due to the high speed of vehicles, the topology of the network is highly dynamic, and the network may be disconnected frequently. So how to transfer large files in such network is worth considering. In case that the encountering nodes which never meet before flood messages blindly to cause tremendous network overhead. We address this challenge by introducing the Encounter Utility Rank Router(EURR) based on social metrics. EURR includes three cases: Utility Replication Strategy, Lifetime Replication Strategy and SocialRank Replication Strategy. The Lifetime Replication is promising complement to Utility Replication. It enhances the delivery ratio by relaying the copy via the remaining lifetime. Considering network overhead, the SocialRank Replication replicates a copy according to the SocialRank when two communicating nodes do not meet before. The routing mechanism explores the utility of history encounter information and social opportunistic forwarding. The results under the scenario show an advantage of the proposed Encounter Utility Rank Router (EURR) over the compared algorithms in terms of delivery ratio, average delivery latency and overhead ratio

    Routing Heterogeneous Traffic in Delay-Tolerant Satellite Networks

    Full text link
    Delay-tolerant networking (DTN) offers a novel architecture that can be used to enhance store-carry-forward routing in satellite networks. Since these networks can take advantage of scheduled contact plans, distributed algorithms like the Contact Graph Routing (CGR) can be utilized to optimize data delivery performance. However, despite the numerous improvements made to CGR, there is a lack of proposals to prioritize traffic with distinct quality of service (QoS) requirements. This study presents adaptations to CGR to improve QoS-compliant delivery ratio when transmitting traffic with different latency constraints, along with an integer linear programming optimization model that serves as a performance upper bound. The extensive results obtained by simulating different scenarios show that the proposed algorithms can effectively improve the delivery ratio and energy efficiency while meeting latency constraints

    Performance of management solutions and cooperation approaches for vehicular delay-tolerant networks

    Get PDF
    A wide range of daily-life applications supported by vehicular networks attracted the interest, not only from the research community, but also from governments and the automotive industry. For example, they can be used to enable services that assist drivers on the roads (e.g., road safety, traffic monitoring), to spread commercial and entertainment contents (e.g., publicity), or to enable communications on remote or rural regions where it is not possible to have a common network infrastructure. Nonetheless, the unique properties of vehicular networks raise several challenges that greatly impact the deployment of these networks. Most of the challenges faced by vehicular networks arise from the highly dynamic network topology, which leads to short and sporadic contact opportunities, disruption, variable node density, and intermittent connectivity. This situation makes data dissemination an interesting research topic within the vehicular networking area, which is addressed by this study. The work described along this thesis is motivated by the need to propose new solutions to deal with data dissemination problems in vehicular networking focusing on vehicular delay-tolerant networks (VDTNs). To guarantee the success of data dissemination in vehicular networks scenarios it is important to ensure that network nodes cooperate with each other. However, it is not possible to ensure a fully cooperative scenario. This situation makes vehicular networks suitable to the presence of selfish and misbehavior nodes, which may result in a significant decrease of the overall network performance. Thus, cooperative nodes may suffer from the overwhelming load of services from other nodes, which comprises their performance. Trying to solve some of these problems, this thesis presents several proposals and studies on the impact of cooperation, monitoring, and management strategies on the network performance of the VDTN architecture. The main goal of these proposals is to enhance the network performance. In particular, cooperation and management approaches are exploited to improve and optimize the use of network resources. It is demonstrated the performance gains attainable in a VDTN through both types of approaches, not only in terms of bundle delivery probability, but also in terms of wasted resources. The results and achievements observed on this research work are intended to contribute to the advance of the state-of-the-art on methods and strategies for overcome the challenges that arise from the unique characteristics and conceptual design of vehicular networks.O vasto número de aplicações e cenários suportados pelas redes veiculares faz com que estas atraiam o interesse não só da comunidade científica, mas também dos governos e da indústria automóvel. A título de exemplo, estas podem ser usadas para a implementação de serviços e aplicações que podem ajudar os condutores dos veículos a tomar decisões nas estradas, para a disseminação de conteúdos publicitários, ou ainda, para permitir que existam comunicações em zonas rurais ou remotas onde não é possível ter uma infraestrutura de rede convencional. Contudo, as propriedades únicas das redes veiculares fazem com que seja necessário ultrapassar um conjunto de desafios que têm grande impacto na sua aplicabilidade. A maioria dos desafios que as redes veiculares enfrentam advêm da grande mobilidade dos veículos e da topologia de rede que está em constante mutação. Esta situação faz com que este tipo de rede seja suscetível de disrupção, que as oportunidades de contacto sejam escassas e de curta duração, e que a ligação seja intermitente. Fruto destas adversidades, a disseminação dos dados torna-se um tópico de investigação bastante promissor na área das redes veiculares e por esta mesma razão é abordada neste trabalho de investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à disseminação dos dados em ambientes veiculares. Para garantir o sucesso da disseminação dos dados em ambientes veiculares é importante que este tipo de redes garanta a cooperação entre os nós da rede. Contudo, neste tipo de ambientes não é possível garantir um cenário totalmente cooperativo. Este cenário faz com que as redes veiculares sejam suscetíveis à presença de nós não cooperativos que comprometem seriamente o desempenho global da rede. Por outro lado, os nós cooperativos podem ver o seu desempenho comprometido por causa da sobrecarga de serviços que poderão suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de estratégias de cooperação, monitorização e gestão de rede no desempenho das redes veiculares com ligações intermitentes (Vehicular Delay-Tolerant Networks - VDTNs). O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global da rede. Em particular, as estratégias de cooperação e gestão de rede são exploradas para melhorar e optimizar o uso dos recursos da rede. Ficou demonstrado que o uso deste tipo de estratégias e metodologias contribui para um aumento significativo do desempenho da rede, não só em termos de agregados de pacotes (“bundles”) entregues, mas também na diminuição do volume de recursos desperdiçados. Os resultados observados neste trabalho procuram contribuir para o avanço do estado da arte em métodos e estratégias que visam ultrapassar alguns dos desafios que advêm das propriedades e desenho conceptual das redes veiculares

    Design and Performance Analysis of Opportunistic Routing Protocols for Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) are characterized by the lack of continuous end-to-end connections because of node mobility, constrained power sources, and limited data storage space of some or all of its nodes. Applications of DTNs include vehicular networks and sensor networks in suburban and rural areas. The intermittent connection in DTNs creates a new and challenging environment that has not been tackled before in wireless and wired networks. Traditional routing protocols fail to deliver data packets because they assume the existence of continuous end-to-end connections. To overcome the frequent disconnections, a DTN node is required to store data packets for long periods of time until it becomes in the communication range of other nodes. In addition, to increase the delivery probability, a DTN node spreads multiple copies of the same packet on the network so that one of the copies reaches the destination. Given the limited storage and energy resources of DTN nodes, there is a trade off between maximizing delivery and minimizing storage and energy consumption. DTN routing protocols can be classified as either blind routing, in which no information is provided to select the next node in the path, or guided routing, in which some network information is used to guide data packets to their destinations. In addition they differ in the amount of overhead they impose on the network and its nodes. The objective of DTN routing protocols is to deliver as many packets as possible. Acquiring network information helps in maximizing packet delivery probability and minimizing the network overhead resulting from replicating many packet copies. Network information could be node contact times and durations, node buffer capacities, packet lifetimes, and many others. The more information acquired, the higher performance could be achieved. However, the cost of acquiring the network information in terms of delay and storage could be high to the degree that render the protocol impractical. In designing a DTN routing protocol, the trade-off between the benefits of acquiring information and its costs should be considered. In this thesis, we study the routing problem in DTN with limited resources. Our objective is to design and implement routing protocols that effectively handles the intermittent connection in DTNs to achieve high packet delivery ratios with lower delivery cost. Delivery cost is represented in terms of number of transmissions per delivered packet. Decreasing the delivery cost means less network overhead and less energy consumption per node. In order to achieve that objective, we first target the optimal results that could be achieved in an ideal scenario. We formulate a mathematical model for optimal routing, assuming the presence of a global observer that can collect information about all the nodes in the network. The optimal results provide us with bounds on the performance metrics, and show the room for improvement that should be worked on. However, optimal routing with a global observer is just a theoretical model, and cannot be implemented practically. In DTNs, there is a need for a distributed routing protocol which utilizes local and easily-collectable data. Therefore, We investigate the different types of heuristic (non-optimal) distributed routing protocols, showing their strengths and weaknesses. Out of the large collection of protocols, we select four protocols that represent different routing classes and are well-known and highly referred by others working in the same area. We implement the protocols using a DTN simulator, and compare their performance under different network and node conditions. We study the impact of changing the node buffer capacities, packet lifetimes, number of nodes, and traffic load on their performance metrics, which are the delivery ratio, delivery cost, and packet average delay. Based on these comparisons, we draw conclusions and guidelines to design an efficient DTN routing protocol. Given the protocol design guidelines, we develop our first DTN routing protocol, Eco-Friendly Routing for DTN (EFR-DTN), which combines the strengths of two of the previously proposed protocols to provide better delivery ratio with low network overhead (less power consumption). The protocol utilizes node encounters to estimate the route to destination, while minimizing the number of packet copies throughout the network. All current DTN routing protocols strive to estimate the route from source to destination, which requires collecting information about node encounters. In addition to the overhead it imposes on the network to collect this information, the time to collect this information could render the data worthless to propagate through the network. Our next proposal is a routing protocol, Social Groups Based Routing (SGBR), which uses social relations among network nodes to exclude the nodes that are not expected to significantly increase the probability of delivering the packet to its destination. Using social relations among nodes, detected from node encounters, every group of nodes can form a social group. Nodes belonging to the same social group are expected to meet each other frequently, and meet nodes from other groups less frequently. Spreading packet copies inside the same social group is found to be of low-added value to the carrying node in delivering a packet to its destination. Therefore, our proposed routing protocol spreads the packet copies to other social groups, which decreases the number of copies throughout the network. We compare the new protocol with the optimal results and the existing well-known routing protocols using real-life simulations. Results show that the proposed protocol achieves higher delivery ratio and less average delay compared to other protocols with significant reduction in network overhead. Finally, we discuss the willingness of DTN nodes to cooperate in routing services. From a network perspective, all nodes are required to participate in delivering packets of each other. From a node perspective, minimizing resource consumption is a critical requirement. We investigate the degree of fair cooperation where all nodes are satisfied with their participation in the network routing services. A new credit-based system is implemented to keep track of and reward node participation in packet routing. Results show that the proposed system improves the fairness among nodes and increases their satisfaction

    Data availability in challenging networking environments in presence of failures

    Get PDF
    This Doctoral thesis presents research on improving data availability in challenging networking environments where failures frequently occur. The thesis discusses the data retrieval and transfer mechanisms in challenging networks such as the Grid and the delay-tolerant networking (DTN). The Grid concept has gained adaptation as a solution to high-performance computing challenges that are faced in international research collaborations. Challenging networking is a novel research area in communications. The first part of the thesis introduces the challenges of data availability in environment where resources are scarce. The focus is especially on the challenges faced in the Grid and in the challenging networking scenarios. A literature overview is given to explain the most important research findings and the state of the standardization work in the field. The experimental part of the thesis consists of eight scientific publications and explains how they contribute to research in the field. Focus in on explaining how data transfer mechanisms have been improved from the application and networking layer points of views. Experimental methods for the Grid scenarios comprise of running a newly developed storage application on the existing research infrastructure. A network simulator is extended for the experimentation with challenging networking mechanisms in a network formed by mobile users. The simulator enables to investigate network behavior with a large number of nodes, and with conditions that are difficult to re-instantiate. As a result, recommendations are given for data retrieval and transfer design for the Grid and mobile networks. These recommendations can guide both system architects and application developers in their work. In the case of the Grid research, the results give first indications on the applicability of the erasure correcting codes for data storage and retrieval with the existing Grid data storage tools. In the case of the challenging networks, the results show how an application-aware communication approach can be used to improve data retrieval and communications. Recommendations are presented to enable efficient transfer and management of data items that are large compared to available resources

    HINT - from opportunistic network characterization to application development

    Get PDF
    Delay Tolerant Networks are currently a promising alternative to infrastructure-based networks, but they have not seen a wide deployment so far. There are several ways to evaluate the performance of such networks: field trials, theoretical models, simulation, emulation or replaying contact datasets. Each one has its advantages and drawbacks in terms of material cost, realism, required time or ability to manage real nodes. However, none of them effectively addresses the needs of application developers. In this thesis, we will focus on emulation. In a first part, we will deal with possible inputs for such a system. We first propose an analytical model to predict the drop ratio in a network where nodes have a one-packet buffer. Then, taking inspiration from trace scaling approaches from the literature, we study the hypotheses and assumptions taken for real traces statistical analyses, showing their impact on the obtained probability distributions and observed network performance metrics. We then extend this study to the whole life cycle of real traces, by considering data collection, filtering and scaling. In a second part, we propose a possible architecture for a hybrid DTN emulator, using both real nodes as smartphones and virtual nodes. The main advantage here is to be able to evaluate real applications, including preexisting ones, in a DTN context, doing so as transparently as possible. We identify the limitations of existing approaches, which helps us build a list of specifications for our system. Then, we propose a system called HINT which matches these specifications. HINT is validated, and applied to the study of some examples
    corecore