17,155 research outputs found

    Agent-based pedestrian modelling

    Get PDF
    When the focus of interest in geographical systems is at the very fine scale, at the level of streets and buildings for example, movement becomes central to simulations of how spatial activities are used and develop. Recent advances in computing power and the acquisition of fine scale digital data now mean that we are able to attempt to understand and predict such phenomena with the focus in spatial modelling changing to dynamic simulations of the individual and collective behaviour of individual decision-making at such scales. In this Chapter, we develop ideas about how such phenomena can be modelled showing first how randomness and geometry are all important to local movement and how ordered spatial structures emerge from such actions. We focus on developing these ideas for pedestrians showing how random walks constrained by geometry but aided by what agents can see, determine how individuals respond to locational patterns. We illustrate these ideas with three types of example: first for local scale street scenes where congestion and flocking is all important, second for coarser scale shopping centres such as malls where economic preference interferes much more with local geometry, and finally for semi-organised street festivals where management and control by police and related authorities is integral to the way crowds move

    Physics as Quantum Information Processing: Quantum Fields as Quantum Automata

    Full text link
    Can we reduce Quantum Field Theory (QFT) to a quantum computation? Can physics be simulated by a quantum computer? Do we believe that a quantum field is ultimately made of a numerable set of quantum systems that are unitarily interacting? A positive answer to these questions corresponds to substituting QFT with a theory of quantum cellular automata (QCA), and the present work is examining this hypothesis. These investigations are part of a large research program on a "quantum-digitalization" of physics, with Quantum Theory as a special theory of information, and Physics as emergent from the same quantum-information processing. A QCA-based QFT has tremendous potential advantages compared to QFT, being quantum "ab-initio" and free from the problems plaguing QFT due to the continuum hypothesis. Here I will show how dynamics emerges from the quantum processing, how the QCA can reproduce the Dirac-field phenomenology at large scales, and the kind of departures from QFT that that should be expected at a Planck-scale discreteness. I will introduce the notions of linear field quantum automaton and local-matrix quantum automaton, in terms of which I will provide the solution to the Feynman's problem about the possibility of simulating a Fermi field with a quantum computer.Comment: This version: further improvements in notation. Added reference. Work presented at the conference "Foundations of Probability and Physics-6" (FPP6) held on 12-15 June 2011 at the Linnaeus University, Vaaxjo, Sweden. Many new results, e.g. Feynman problem of qubit-ization of Fermi fields solved

    Scientific requirements for an engineered model of consciousness

    Get PDF
    The building of a non-natural conscious system requires more than the design of physical or virtual machines with intuitively conceived abilities, philosophically elucidated architecture or hardware homologous to an animal’s brain. Human society might one day treat a type of robot or computing system as an artificial person. Yet that would not answer scientific questions about the machine’s consciousness or otherwise. Indeed, empirical tests for consciousness are impossible because no such entity is denoted within the theoretical structure of the science of mind, i.e. psychology. However, contemporary experimental psychology can identify if a specific mental process is conscious in particular circumstances, by theory-based interpretation of the overt performance of human beings. Thus, if we are to build a conscious machine, the artificial systems must be used as a test-bed for theory developed from the existing science that distinguishes conscious from non-conscious causation in natural systems. Only such a rich and realistic account of hypothetical processes accounting for observed input/output relationships can establish whether or not an engineered system is a model of consciousness. It follows that any research project on machine consciousness needs a programme of psychological experiments on the demonstration systems and that the programme should be designed to deliver a fully detailed scientific theory of the type of artificial mind being developed – a Psychology of that Machine

    Numerical Relativity: A review

    Full text link
    Computer simulations are enabling researchers to investigate systems which are extremely difficult to handle analytically. In the particular case of General Relativity, numerical models have proved extremely valuable for investigations of strong field scenarios and been crucial to reveal unexpected phenomena. Considerable efforts are being spent to simulate astrophysically relevant simulations, understand different aspects of the theory and even provide insights in the search for a quantum theory of gravity. In the present article I review the present status of the field of Numerical Relativity, describe the techniques most commonly used and discuss open problems and (some) future prospects.Comment: 2 References added; 1 corrected. 67 pages. To appear in Classical and Quantum Gravity. (uses iopart.cls
    • 

    corecore