164,955 research outputs found
Generalized Simulated Annealing
We propose a new stochastic algorithm (generalized simulated annealing) for
computationally finding the global minimum of a given (not necessarily convex)
energy/cost function defined in a continuous D-dimensional space. This
algorithm recovers, as particular cases, the so called classical ("Boltzmann
machine") and fast ("Cauchy machine") simulated annealings, and can be quicker
than both. Key-words: simulated annealing; nonconvex optimization; gradient
descent; generalized statistical mechanics.Comment: 13 pages, latex, 4 figures available upon request with the authors
Time series forecasting using a TSK fuzzy system tuned with simulated annealing
In this paper, a combination of a Takagi-Sugeno fuzzy system (TSK) and simulated annealing is used to predict well known time series by searching for the best configuration of the fuzzy system. Simulated annealing is used to optimise the parameters of the antecedent and the consequent parts of the fuzzy system rules. The results of the proposed method are encouraging indicating that simulated annealing and fuzzy logic are able to combine well in time series prediction
Simulated Annealing for Topological Solitons
The search for solutions of field theories allowing for topological solitons
requires that we find the field configuration with the lowest energy in a given
sector of topological charge. The standard approach is based on the numerical
solution of the static Euler-Lagrange differential equation following from the
field energy. As an alternative, we propose to use a simulated annealing
algorithm to minimize the energy functional directly. We have applied simulated
annealing to several nonlinear classical field theories: the sine-Gordon model
in one dimension, the baby Skyrme model in two dimensions and the nuclear
Skyrme model in three dimensions. We describe in detail the implementation of
the simulated annealing algorithm, present our results and get independent
confirmation of the studies which have used standard minimization techniques.Comment: 31 pages, LaTeX, better quality pics at
http://www.phy.umist.ac.uk/~weidig/Simulated_Annealing/, updated for
publicatio
Quantum versus classical annealing: insights from scaling theory and results for spin glasses on 3-regular graphs
We discuss an Ising spin glass where each spin is coupled
antiferromagnetically to three other spins (3-regular graphs). Inducing quantum
fluctuations by a time-dependent transverse field, we use out-of-equilibrium
quantum Monte Carlo simulations to study dynamic scaling at the quantum glass
transition. Comparing the dynamic exponent and other critical exponents with
those of the classical (temperature-driven) transition, we conclude that
quantum annealing is less efficient than classical simulated annealing in
bringing the system into the glass phase. Quantum computing based on the
quantum annealing paradigm is therefore inferior to classical simulated
annealing for this class of problems. We also comment on previous simulations
where a parameter is changed with the simulation time, which is very different
from the true Hamiltonian dynamics simulated here.Comment: 5 pages, 3 figure
Simulated Annealing for JPEG Quantization
JPEG is one of the most widely used image formats, but in some ways remains
surprisingly unoptimized, perhaps because some natural optimizations would go
outside the standard that defines JPEG. We show how to improve JPEG compression
in a standard-compliant, backward-compatible manner, by finding improved
default quantization tables. We describe a simulated annealing technique that
has allowed us to find several quantization tables that perform better than the
industry standard, in terms of both compressed size and image fidelity.
Specifically, we derive tables that reduce the FSIM error by over 10% while
improving compression by over 20% at quality level 95 in our tests; we also
provide similar results for other quality levels. While we acknowledge our
approach can in some images lead to visible artifacts under large
magnification, we believe use of these quantization tables, or additional
tables that could be found using our methodology, would significantly reduce
JPEG file sizes with improved overall image quality.Comment: Appendix not included in arXiv version due to size restrictions. For
full paper go to:
http://www.eecs.harvard.edu/~michaelm/SimAnneal/PAPER/simulated-annealing-jpeg.pd
Optimization by Quantum Annealing: Lessons from hard 3-SAT cases
The Path Integral Monte Carlo simulated Quantum Annealing algorithm is
applied to the optimization of a large hard instance of the Random 3-SAT
Problem (N=10000). The dynamical behavior of the quantum and the classical
annealing are compared, showing important qualitative differences in the way of
exploring the complex energy landscape of the combinatorial optimization
problem. At variance with the results obtained for the Ising spin glass and for
the Traveling Salesman Problem, in the present case the linear-schedule Quantum
Annealing performance is definitely worse than Classical Annealing.
Nevertheless, a quantum cooling protocol based on field-cycling and able to
outperform standard classical simulated annealing over short time scales is
introduced.Comment: 10 pages, 6 figures, submitted to PR
- …
