3 research outputs found

    Semantical Characterizations and Complexity of Equivalences in Answer Set Programming

    Full text link
    In recent research on non-monotonic logic programming, repeatedly strong equivalence of logic programs P and Q has been considered, which holds if the programs P union R and Q union R have the same answer sets for any other program R. This property strengthens equivalence of P and Q with respect to answer sets (which is the particular case for R is the empty set), and has its applications in program optimization, verification, and modular logic programming. In this paper, we consider more liberal notions of strong equivalence, in which the actual form of R may be syntactically restricted. On the one hand, we consider uniform equivalence, where R is a set of facts rather than a set of rules. This notion, which is well known in the area of deductive databases, is particularly useful for assessing whether programs P and Q are equivalent as components of a logic program which is modularly structured. On the other hand, we consider relativized notions of equivalence, where R ranges over rules over a fixed alphabet, and thus generalize our results to relativized notions of strong and uniform equivalence. For all these notions, we consider disjunctive logic programs in the propositional (ground) case, as well as some restricted classes, provide semantical characterizations and analyze the computational complexity. Our results, which naturally extend to answer set semantics for programs with strong negation, complement the results on strong equivalence of logic programs and pave the way for optimizations in answer set solvers as a tool for input-based problem solving.Comment: 58 pages, 6 tables. The contents were partially published in: Proceedings 19th International Conference on Logic Programming (ICLP 2003), pp. 224-238, LNCS 2916, Springer, 2003; and Proceedings 9th European Conference on Logics in Artificial Intelligence (JELIA 2004), pp. 161-173, LNCS 3229, Springer, 200

    Characterising equilibrium logic and nested logic programs: Reductions and complexity

    Full text link
    Equilibrium logic is an approach to nonmonotonic reasoning that extends the stable-model and answer-set semantics for logic programs. In particular, it includes the general case of nested logic programs, where arbitrary Boolean combinations are permitted in heads and bodies of rules, as special kinds of theories. In this paper, we present polynomial reductions of the main reasoning tasks associated with equilibrium logic and nested logic programs into quantified propositional logic, an extension of classical propositional logic where quantifications over atomic formulas are permitted. We provide reductions not only for decision problems, but also for the central semantical concepts of equilibrium logic and nested logic programs. In particular, our encodings map a given decision problem into some formula such that the latter is valid precisely in case the former holds. The basic tasks we deal with here are the consistency problem, brave reasoning, and skeptical reasoning. Additionally, we also provide encodings for testing equivalence of theories or programs under different notions of equivalence, viz. ordinary, strong, and uniform equivalence. For all considered reasoning tasks, we analyse their computational complexity and give strict complexity bounds

    Omission-based Abstraction for Answer Set Programs

    Full text link
    Abstraction is a well-known approach to simplify a complex problem by over-approximating it with a deliberate loss of information. It was not considered so far in Answer Set Programming (ASP), a convenient tool for problem solving. We introduce a method to automatically abstract ASP programs that preserves their structure by reducing the vocabulary while ensuring an over-approximation (i.e., each original answer set maps to some abstract answer set). This allows for generating partial answer set candidates that can help with approximation of reasoning. Computing the abstract answer sets is intuitively easier due to a smaller search space, at the cost of encountering spurious answer sets. Faithful (non-spurious) abstractions may be used to represent projected answer sets and to guide solvers in answer set construction. For dealing with spurious answer sets, we employ an ASP debugging approach to help with abstraction refinement, which determines atoms as badly omitted and adds them back in the abstraction. As a show case, we apply abstraction to explain unsatisfiability of ASP programs in terms of blocker sets, which are the sets of atoms such that abstraction to them preserves unsatisfiability. Their usefulness is demonstrated by experimental results.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP
    corecore