9 research outputs found

    Balancing Scalability and Uniformity in SAT Witness Generator

    Full text link
    Constrained-random simulation is the predominant approach used in the industry for functional verification of complex digital designs. The effectiveness of this approach depends on two key factors: the quality of constraints used to generate test vectors, and the randomness of solutions generated from a given set of constraints. In this paper, we focus on the second problem, and present an algorithm that significantly improves the state-of-the-art of (almost-)uniform generation of solutions of large Boolean constraints. Our algorithm provides strong theoretical guarantees on the uniformity of generated solutions and scales to problems involving hundreds of thousands of variables.Comment: This is a full version of DAC 2014 pape

    Fast generation of lexicographic satisfiable assignments: enabling canonicity in SAT-based applications

    Get PDF
    Lexicographic Boolean satisfiability (LEXSAT) is a variation of the Boolean satisfiability problem (SAT). Given a variable order, LEXSAT finds a satisfying assignment whose integer value under the given variable order is minimum (maximum) among all satisfiable assignments. If the formula has no satisfying assignments, LEXSAT proves it unsatisfiable, as does the traditional SAT. The paper proposes an efficient algorithm for LEXSAT by combining incremental SAT solving with binary search. It also proposes methods that use the lexicographic properties of the assignments to further improve the runtime when generating consecutive satisfying assignments in lexicographic order. The proposed algorithm outperforms the state-of-the-art LEXSAT algorithm—on average, it is 2.4 times faster when generating a single LEXSAT assignment, and it is 6.3 times faster when generating multiple consecutive assignments

    Sampling Techniques for Boolean Satisfiability

    Full text link
    Boolean satisfiability ({\SAT}) has played a key role in diverse areas spanning testing, formal verification, planning, optimization, inferencing and the like. Apart from the classical problem of checking boolean satisfiability, the problems of generating satisfying uniformly at random, and of counting the total number of satisfying assignments have also attracted significant theoretical and practical interest over the years. Prior work offered heuristic approaches with very weak or no guarantee of performance, and theoretical approaches with proven guarantees, but poor performance in practice. We propose a novel approach based on limited-independence hashing that allows us to design algorithms for both problems, with strong theoretical guarantees and scalability extending to thousands of variables. Based on this approach, we present two practical algorithms, {\UniformWitness}: a near uniform generator and {\approxMC}: the first scalable approximate model counter, along with reference implementations. Our algorithms work by issuing polynomial calls to {\SAT} solver. We demonstrate scalability of our algorithms over a large set of benchmarks arising from different application domains.Comment: MS Thesis submitted to Rice Universit

    A Functional Verification Methodology for an Improved Coverage of System-on-Chips

    Get PDF
    The increasing popularity of System-on-Chip (SoC) circuits results in many new design challenges. One major challenge is to ensure the functional correctness of such complicated circuits. Functional verification is a verification technique used to verify the functional correctness of SoCs. Coverage Directed Test Generation (CDTG) is an essential part of functional verification, where the objective is to generate input stimulus that maximize the coverage of a design. Coverage helps to determine how well the input stimulus verified the design under verification. CDTG techniques analyze coverage results and adapt the input stimulus generation process to improve the coverage. One of the important component of CDTG based tools is the constraint solver. The time efficiency of the verification process depends on the efficiency of the solver. But the constraint solvers associated with CDTG tools require large amount of memory and time to generate input stimuli for SoCs. The solvers cannot generate solutions which are evenly distributed in search space, in order to attain the required coverage. The aim of this thesis is to provide a practical framework that enables the generation of evenly distributed input stimuli. A basic feature of the search space (data set) is that it contains k sub populations or clusters. Partitioning the search space into clusters and generating solutions from the partitions can improve the evenness of the solutions generated by the solver. Hence one of our main contribution is a novel domain partitioning algorithm. The domain partitioning algorithm relies on solution generated by a consistency search algorithm developed for our purpose. The number of partitions (required by the domain partitioning algorithm) is determined by using an algorithm which can find the optimal number of clusters present in a data set. To demonstrate the effectiveness of our approach, we apply our methodology on Constraint Satisfaction Problems (CSPs) and some real life applications

    Exploiting Satisfiability Solvers for Efficient Logic Synthesis

    Get PDF
    Logic synthesis is an important part of electronic design automation (EDA) flows, which enable the implementation of digital systems. As the design size and complexity increase, the data structures and algorithms for logic synthesis must adapt and improve in order to keep pace and to maintain acceptable runtime and high-quality results. Large circuits were often represented using binary decision diagrams (BDDs) that were rapidly adopted by logic synthesis tools beginning in the 1980s. Nowadays, BDD-based algorithms are still enhanced, but the possibilities for improvement are somewhat saturated after some 35 years of research. Alternatively, the first EDA applications that exploit Boolean satisfiability (SAT) were developed in the 1990s. Despite the worst-case exponential runtime of SAT solvers, rapid progress in their performance enabled the creation of efficient SAT-based algorithms. Yet, logic synthesis started using SAT solvers more diffusely only in the last decade. Therefore, thorough research is still required both for exploiting SAT solvers and for encoding logic synthesis problems into SAT. Our main goal in this thesis is to facilitate and promote the further integration of SAT solvers into EDA by proposing and evaluating novel SAT-based algorithms that can be used as building blocks in logic synthesis tools. First, we propose a rapid algorithm for LEXSAT, which generates satisfying assignments in lexicographic order. We show that LEXSAT can bring canonicity, which guarantees the generation of unique results, when using SAT solvers in EDA applications. Next, we present a new SAT-based algorithm that progressively generates irredundant sums of products (SOPs), which still play a crucial role in many logic synthesis tools. Using LEXSAT, for the first time, we can generate canonical SAT-based SOPs that, much like BDD-based SOPs, are unique for a given function and variable order but could relax canonicity in order to improve speed and scalability. Unlike BDDs, due to its progressive nature, our algorithm can generate partial SOPs for applications that can work with incomplete circuit functionality. It is noteworthy that both LEXSAT and the SAT-based SOPs are applicable beyond logic synthesis and EDA. Finally, we focus on resubstitution, which reimplements a given Boolean function as a new function that depends on a set of existing functions called divisors. We propose the carving interpolation algorithm that, unlike the traditional Craig interpolation, forces the use of a specific divisor as an input of the new function. This is particularly useful for global circuit restructuring and for some synthesis-based engineering change order (ECO) algorithms. Furthermore, we compare two existing SAT-based methodologies for resubstitution, which are used for post-mapping logic optimisation. The first methodology combines SAT-based functional dependency checking and Craig interpolation that are also used for our carving interpolation; the second methodology is based on cube enumeration and is similar to the SAT-based SOP generation. The initial implementations of our novel SAT-based algorithms offer either better performance or new features, or both, compared to their state-of-the-art versions. As the results indicate, a further thorough development of SAT-based algorithms for logic synthesis, like the one performed for BDDs in the past, can help overcome existing limitations and keep up with growing designs and design complexity
    corecore