6,284 research outputs found

    Exact duality in semidefinite programming based on elementary reformulations

    Get PDF
    In semidefinite programming (SDP), unlike in linear programming, Farkas' lemma may fail to prove infeasibility. Here we obtain an exact, short certificate of infeasibility in SDP by an elementary approach: we reformulate any semidefinite system of the form Ai*X = bi (i=1,...,m) (P) X >= 0 using only elementary row operations, and rotations. When (P) is infeasible, the reformulated system is trivially infeasible. When (P) is feasible, the reformulated system has strong duality with its Lagrange dual for all objective functions. As a corollary, we obtain algorithms to generate the constraints of {\em all} infeasible SDPs and the constraints of {\em all} feasible SDPs with a fixed rank maximal solution.Comment: To appear, SIAM Journal on Optimizatio

    Worst-Case Linear Discriminant Analysis as Scalable Semidefinite Feasibility Problems

    Full text link
    In this paper, we propose an efficient semidefinite programming (SDP) approach to worst-case linear discriminant analysis (WLDA). Compared with the traditional LDA, WLDA considers the dimensionality reduction problem from the worst-case viewpoint, which is in general more robust for classification. However, the original problem of WLDA is non-convex and difficult to optimize. In this paper, we reformulate the optimization problem of WLDA into a sequence of semidefinite feasibility problems. To efficiently solve the semidefinite feasibility problems, we design a new scalable optimization method with quasi-Newton methods and eigen-decomposition being the core components. The proposed method is orders of magnitude faster than standard interior-point based SDP solvers. Experiments on a variety of classification problems demonstrate that our approach achieves better performance than standard LDA. Our method is also much faster and more scalable than standard interior-point SDP solvers based WLDA. The computational complexity for an SDP with mm constraints and matrices of size dd by dd is roughly reduced from O(m3+md3+m2d2)\mathcal{O}(m^3+md^3+m^2d^2) to O(d3)\mathcal{O}(d^3) (m>dm>d in our case).Comment: 14 page

    Computational Complexity versus Statistical Performance on Sparse Recovery Problems

    Get PDF
    We show that several classical quantities controlling compressed sensing performance directly match classical parameters controlling algorithmic complexity. We first describe linearly convergent restart schemes on first-order methods solving a broad range of compressed sensing problems, where sharpness at the optimum controls convergence speed. We show that for sparse recovery problems, this sharpness can be written as a condition number, given by the ratio between true signal sparsity and the largest signal size that can be recovered by the observation matrix. In a similar vein, Renegar's condition number is a data-driven complexity measure for convex programs, generalizing classical condition numbers for linear systems. We show that for a broad class of compressed sensing problems, the worst case value of this algorithmic complexity measure taken over all signals matches the restricted singular value of the observation matrix which controls robust recovery performance. Overall, this means in both cases that, in compressed sensing problems, a single parameter directly controls both computational complexity and recovery performance. Numerical experiments illustrate these points using several classical algorithms.Comment: Final version, to appear in information and Inferenc
    • …
    corecore