4 research outputs found

    Simplified Erasure/List Decoding

    Full text link
    We consider the problem of erasure/list decoding using certain classes of simplified decoders. Specifically, we assume a class of erasure/list decoders, such that a codeword is in the list if its likelihood is larger than a threshold. This class of decoders both approximates the optimal decoder of Forney, and also includes the following simplified subclasses of decoding rules: The first is a function of the output vector only, but not the codebook (which is most suitable for high rates), and the second is a scaled version of the maximum likelihood decoder (which is most suitable for low rates). We provide single-letter expressions for the exact random coding exponents of any decoder in these classes, operating over a discrete memoryless channel. For each class of decoders, we find the optimal decoder within the class, in the sense that it maximizes the erasure/list exponent, under a given constraint on the error exponent. We establish the optimality of the simplified decoders of the first and second kind for low and high rates, respectively.Comment: Submitted to IEEE Transactions on Information Theor

    Channel Detection in Coded Communication

    Full text link
    We consider the problem of block-coded communication, where in each block, the channel law belongs to one of two disjoint sets. The decoder is aimed to decode only messages that have undergone a channel from one of the sets, and thus has to detect the set which contains the prevailing channel. We begin with the simplified case where each of the sets is a singleton. For any given code, we derive the optimum detection/decoding rule in the sense of the best trade-off among the probabilities of decoding error, false alarm, and misdetection, and also introduce sub-optimal detection/decoding rules which are simpler to implement. Then, various achievable bounds on the error exponents are derived, including the exact single-letter characterization of the random coding exponents for the optimal detector/decoder. We then extend the random coding analysis to general sets of channels, and show that there exists a universal detector/decoder which performs asymptotically as well as the optimal detector/decoder, when tuned to detect a channel from a specific pair of channels. The case of a pair of binary symmetric channels is discussed in detail.Comment: Submitted to IEEE Transactions on Information Theor

    Simplified Erasure/List Decoding

    No full text
    corecore