4 research outputs found

    Simple tricks for improving pattern-based information extraction from the biomedical literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pattern-based approaches to relation extraction have shown very good results in many areas of biomedical text mining. However, defining the right set of patterns is difficult; approaches are either manual, incurring high cost, or automatic, often resulting in large sets of noisy patterns.</p> <p>Results</p> <p>We propose several techniques for filtering sets of automatically generated patterns and analyze their effectiveness for different extraction tasks, as defined in the recent BioNLP 2009 shared task. We focus on simple methods that only take into account the complexity of the pattern and the complexity of the texts the patterns are applied to. We show that our techniques, despite their simplicity, yield large improvements in all tasks we analyzed. For instance, they raise the F-score for the task of extraction gene expression events from 24.8% to 51.9%.</p> <p>Conclusions</p> <p>Already very simple filtering techniques may improve the F-score of an information extraction method based on automatically generated patterns significantly. Furthermore, the application of such methods yields a considerable speed-up, as fewer matches need to be analysed. Due to their simplicity, the proposed filtering techniques also should be applicable to other methods using linguistic patterns for information extraction.</p

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    Automatic extraction of biomolecular interactions: an empirical approach

    Get PDF
    Background We describe a method for extracting data about how biomolecule pairs interact from texts. This method relies on empirically determined characteristics of sentences. The characteristics are efficient to compute, making this approach to extraction of biomolecular interactions scalable. The results of such interaction mining can support interaction network annotation, question answering, database construction, and other applications. Results We constructed a software system to search MEDLINE for sentences likely to describe interactions between given biomolecules. The system extracts a list of the interaction-indicating terms appearing in those sentences, then ranks those terms based on their likelihood of correctly characterizing how the biomolecules interact. The ranking process uses a tf-idf (term frequency-inverse document frequency) based technique using empirically derived knowledge about sentences, and was applied to the MEDLINE literature collection. Software was developed as part of the MetNet toolkit (http://www.metnetdb.org). Conclusions Specific, efficiently computable characteristics of sentences about biomolecular interactions were analyzed to better understand how to use these characteristics to extract how biomolecules interact. The text empirics method that was investigated, though arising from a classical tradition, has yet to be fully explored for the task of extracting biomolecular interactions from the literature. The conclusions we reach about the sentence characteristics investigated in this work, as well as the technique itself, could be used by other systems to provide evidence about putative interactions, thus supporting efforts to maximize the ability of hybrid systems to support such tasks as annotating and constructing interaction networks
    corecore