9,588 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    SQUASH: Simple QoS-Aware High-Performance Memory Scheduler for Heterogeneous Systems with Hardware Accelerators

    Full text link
    Modern SoCs integrate multiple CPU cores and Hardware Accelerators (HWAs) that share the same main memory system, causing interference among memory requests from different agents. The result of this interference, if not controlled well, is missed deadlines for HWAs and low CPU performance. State-of-the-art mechanisms designed for CPU-GPU systems strive to meet a target frame rate for GPUs by prioritizing the GPU close to the time when it has to complete a frame. We observe two major problems when such an approach is adapted to a heterogeneous CPU-HWA system. First, HWAs miss deadlines because they are prioritized only close to their deadlines. Second, such an approach does not consider the diverse memory access characteristics of different applications running on CPUs and HWAs, leading to low performance for latency-sensitive CPU applications and deadline misses for some HWAs, including GPUs. In this paper, we propose a Simple Quality of service Aware memory Scheduler for Heterogeneous systems (SQUASH), that overcomes these problems using three key ideas, with the goal of meeting deadlines of HWAs while providing high CPU performance. First, SQUASH prioritizes a HWA when it is not on track to meet its deadline any time during a deadline period. Second, SQUASH prioritizes HWAs over memory-intensive CPU applications based on the observation that the performance of memory-intensive applications is not sensitive to memory latency. Third, SQUASH treats short-deadline HWAs differently as they are more likely to miss their deadlines and schedules their requests based on worst-case memory access time estimates. Extensive evaluations across a wide variety of different workloads and systems show that SQUASH achieves significantly better CPU performance than the best previous scheduler while always meeting the deadlines for all HWAs, including GPUs, thereby largely improving frame rates
    • …
    corecore