2 research outputs found

    An Efficient Local Search for Partial Latin Square Extension Problem

    Full text link
    A partial Latin square (PLS) is a partial assignment of n symbols to an nxn grid such that, in each row and in each column, each symbol appears at most once. The partial Latin square extension problem is an NP-hard problem that asks for a largest extension of a given PLS. In this paper we propose an efficient local search for this problem. We focus on the local search such that the neighborhood is defined by (p,q)-swap, i.e., removing exactly p symbols and then assigning symbols to at most q empty cells. For p in {1,2,3}, our neighborhood search algorithm finds an improved solution or concludes that no such solution exists in O(n^{p+1}) time. We also propose a novel swap operation, Trellis-swap, which is a generalization of (1,q)-swap and (2,q)-swap. Our Trellis-neighborhood search algorithm takes O(n^{3.5}) time to do the same thing. Using these neighborhood search algorithms, we design a prototype iterated local search algorithm and show its effectiveness in comparison with state-of-the-art optimization solvers such as IBM ILOG CPLEX and LocalSolver.Comment: 17 pages, 2 figure

    Simple and fast surrogate constraint heuristics for the maximum independent set problem

    No full text
    In a recent paper Glover (J. Heuristics 9:175-227, 2003) discussed a variety of surrogate constraint-based heuristics for solving optimization problems in graphs. The key ideas put forth in the paper were illustrated by giving specializations designed for certain covering and coloring problems. In particular, a family of methods designed for the maximum cardinality independent set problem was presented. In this paper we report on the efficiency and effectiveness of these methods based on considerable computational testing carried out on test problems from the literature as well as some new test problems. © 2007 Springer Science+Business Media, LLC
    corecore