15,228 research outputs found

    Tight polynomial worst-case bounds for loop programs

    Get PDF
    In 2008, Ben-Amram, Jones and Kristiansen showed that for a simple programming language - representing non-deterministic imperative programs with bounded loops, and arithmetics limited to addition and multiplication - it is possible to decide precisely whether a program has certain growth-rate properties, in particular whether a computed value, or the program's running time, has a polynomial growth rate. A natural and intriguing problem was to move from answering the decision problem to giving a quantitative result, namely, a tight polynomial upper bound. This paper shows how to obtain asymptotically-tight, multivariate, disjunctive polynomial bounds for this class of programs. This is a complete solution: whenever a polynomial bound exists it will be found. A pleasant surprise is that the algorithm is quite simple; but it relies on some subtle reasoning. An important ingredient in the proof is the forest factorization theorem, a strong structural result on homomorphisms into a finite monoid

    Multivariate sparse interpolation using randomized Kronecker substitutions

    Full text link
    We present new techniques for reducing a multivariate sparse polynomial to a univariate polynomial. The reduction works similarly to the classical and widely-used Kronecker substitution, except that we choose the degrees randomly based on the number of nonzero terms in the multivariate polynomial, that is, its sparsity. The resulting univariate polynomial often has a significantly lower degree than the Kronecker substitution polynomial, at the expense of a small number of term collisions. As an application, we give a new algorithm for multivariate interpolation which uses these new techniques along with any existing univariate interpolation algorithm.Comment: 21 pages, 2 tables, 1 procedure. Accepted to ISSAC 201

    Cryptography from tensor problems

    Get PDF
    We describe a new proposal for a trap-door one-way function. The new proposal belongs to the "multivariate quadratic" family but the trap-door is different from existing methods, and is simpler
    corecore