10,028 research outputs found

    Generic Subsequence Matching Framework: Modularity, Flexibility, Efficiency

    Get PDF
    Subsequence matching has appeared to be an ideal approach for solving many problems related to the fields of data mining and similarity retrieval. It has been shown that almost any data class (audio, image, biometrics, signals) is or can be represented by some kind of time series or string of symbols, which can be seen as an input for various subsequence matching approaches. The variety of data types, specific tasks and their partial or full solutions is so wide that the choice, implementation and parametrization of a suitable solution for a given task might be complicated and time-consuming; a possibly fruitful combination of fragments from different research areas may not be obvious nor easy to realize. The leading authors of this field also mention the implementation bias that makes difficult a proper comparison of competing approaches. Therefore we present a new generic Subsequence Matching Framework (SMF) that tries to overcome the aforementioned problems by a uniform frame that simplifies and speeds up the design, development and evaluation of subsequence matching related systems. We identify several relatively separate subtasks solved differently over the literature and SMF enables to combine them in straightforward manner achieving new quality and efficiency. This framework can be used in many application domains and its components can be reused effectively. Its strictly modular architecture and openness enables also involvement of efficient solutions from different fields, for instance efficient metric-based indexes. This is an extended version of a paper published on DEXA 2012.Comment: This is an extended version of a paper published on DEXA 201

    Unsupervised landmark analysis for jump detection in molecular dynamics simulations

    Full text link
    Molecular dynamics is a versatile and powerful method to study diffusion in solid-state ionic conductors, requiring minimal prior knowledge of equilibrium or transition states of the system's free energy surface. However, the analysis of trajectories for relevant but rare events, such as a jump of the diffusing mobile ion, is still rather cumbersome, requiring prior knowledge of the diffusive process in order to get meaningful results. In this work, we present a novel approach to detect the relevant events in a diffusive system without assuming prior information regarding the underlying process. We start from a projection of the atomic coordinates into a landmark basis to identify the dominant features in a mobile ion's environment. Subsequent clustering in landmark space enables a discretization of any trajectory into a sequence of distinct states. As a final step, the use of the smooth overlap of atomic positions descriptor allows distinguishing between different environments in a straightforward way. We apply this algorithm to ten Li-ionic systems and conduct in-depth analyses of cubic Li7_{7}La3_{3}Zr2_{2}O12_{12}, tetragonal Li10_{10}GeP2_{2}S12_{12}, and the β\beta-eucryptite LiAlSiO4_{4}. We compare our results to existing methods, underscoring strong points, weaknesses, and insights into the diffusive behavior of the ionic conduction in the materials investigated

    Optic flow based perception of two-dimensional trajectories and the effects of a single landmark.

    Get PDF
    It is well established that human observers can detect their heading direction on a very short time scale on the basis of optic flow. Can they also integrate these perceptions over time to reconstruct a 2D trajectory simulated by the optic flow stimulus? We investigated the visual perception and reconstruction of visually travelled two-dimensional trajectories from optic flow with and without a single landmark. Stimuli in which translation and yaw are unyoked can give rise to illusory percepts; using a structured visual environment instead of only dots can improve perception of these stimuli. Does the additional visual and/or extra-retinal information provided by a single landmark have a similar, beneficial effect? Here, seated, stationary subjects wore a head-mounted display showing optic flow stimuli that simulated various manoeuvres: linear or curvilinear 2D trajectories over a horizontal plane. The simulated orientation was either fixed in space, fixed relative to the path, or changed relative to both. Afterwards, subjects reproduced the perceived manoeuvre with a model vehicle, of which we recorded position and orientation. Yaw was perceived correctly. Perception of the travelled path was less accurate, but still good when the simulated orientation was fixed in space or relative to the trajectory. When the amount of yaw was not equal to the rotation of the path, or in the opposite direction, subjects still perceived orientation as fixed relative to the trajectory. This caused trajectory misperception because yaw was wrongly attributed to a rotation of the path. A single landmark could improve perception

    A Separation Principle on Lie Groups

    Full text link
    For linear time-invariant systems, a separation principle holds: stable observer and stable state feedback can be designed for the time-invariant system, and the combined observer and feedback will be stable. For non-linear systems, a local separation principle holds around steady-states, as the linearized system is time-invariant. This paper addresses the issue of a non-linear separation principle on Lie groups. For invariant systems on Lie groups, we prove there exists a large set of (time-varying) trajectories around which the linearized observer-controler system is time-invariant, as soon as a symmetry-preserving observer is used. Thus a separation principle holds around those trajectories. The theory is illustrated by a mobile robot example, and the developed ideas are then extended to a class of Lagrangian mechanical systems on Lie groups described by Euler-Poincare equations.Comment: Submitted to IFAC 201

    Optic flow based perception of two-dimensional trajectories and the effects of a single landmark.

    Get PDF
    It is well established that human observers can detect their heading direction on a very short time scale on the basis of optic flow (500ms; Hooge et al., 2000). Can they also integrate these perceptions over time to reconstruct a 2D trajectory simulated by the optic flow stimulus? We investigated the visual perception and reconstruction of passively travelled two-dimensional trajectories from optic flow with and without a single landmark. Stimuli in which translation and yaw are unyoked can give rise to illusory percepts; using a structured visual environment instead of only dots can improve perception of these stimuli. Does the additional visual and/or extra-retinal information provided by a single landmark have a similar, beneficial effect? Here, seated, stationary subjects wore a head-mounted display showing optic flow stimuli that simulated various manoeuvres: linear or curvilinear 2D trajectories over a horizontal ground plane. The simulated orientation was either fixed in space, fixed relative to the path, or changed relative to both. Afterwards, subjects reproduced the perceived manoeuvre with a model vehicle, of which we recorded position and orientation. Yaw was perceived correctly. Perception of the travelled path was less accurate, but still good when the simulated orientation was fixed in space or relative to the trajectory. When the amount of yaw was not equal to the rotation of the path, or in the opposite direction, subjects still perceived orientation as fixed relative to the trajectory. This caused trajectory misperception because yaw was wrongly attributed to a rotation of the path. A single landmark could improve perception
    • …
    corecore