4,433 research outputs found

    Regenerative tree growth: structural results and convergence

    Full text link
    We introduce regenerative tree growth processes as consistent families of random trees with n labelled leaves, n>=1, with a regenerative property at branch points. This framework includes growth processes for exchangeably labelled Markov branching trees, as well as non-exchangeable models such as the alpha-theta model, the alpha-gamma model and all restricted exchangeable models previously studied. Our main structural result is a representation of the growth rule by a sigma-finite dislocation measure kappa on the set of partitions of the natural numbers extending Bertoin's notion of exchangeable dislocation measures from the setting of homogeneous fragmentations. We use this representation to establish necessary and sufficient conditions on the growth rule under which we can apply results by Haas and Miermont for unlabelled and not necessarily consistent trees to establish self-similar random trees and residual mass processes as scaling limits. While previous studies exploited some form of exchangeability, our scaling limit results here only require a regularity condition on the convergence of asymptotic frequencies under kappa, in addition to a regular variation condition.Comment: 23 pages, new title, restructured, presentation improve

    General Fragmentation Trees

    Full text link
    We show that the genealogy of any self-similar fragmentation process can be encoded in a compact measured real tree. Under some Malthusian hypotheses, we compute the fractal Hausdorff dimension of this tree through the use of a natural measure on the set of its leaves. This generalizes previous work of Haas and Miermont which was restricted to conservative fragmentation processes

    Restricted exchangeable partitions and embedding of associated hierarchies in continuum random trees

    Get PDF
    We introduce the notion of a restricted exchangeable partition of N\mathbb{N}. We obtain integral representations, consider associated fragmentations, embeddings into continuum random trees and convergence to such limit trees. In particular, we deduce from the general theory developed here a limit result conjectured previously for Ford's alpha model and its extension, the alpha-gamma model, where restricted exchangeability arises naturally.Comment: 35 pages, 5 figure

    Regenerative tree growth: Binary self-similar continuum random trees and Poisson--Dirichlet compositions

    Full text link
    We use a natural ordered extension of the Chinese Restaurant Process to grow a two-parameter family of binary self-similar continuum fragmentation trees. We provide an explicit embedding of Ford's sequence of alpha model trees in the continuum tree which we identified in a previous article as a distributional scaling limit of Ford's trees. In general, the Markov branching trees induced by the two-parameter growth rule are not sampling consistent, so the existence of compact limiting trees cannot be deduced from previous work on the sampling consistent case. We develop here a new approach to establish such limits, based on regenerative interval partitions and the urn-model description of sampling from Dirichlet random distributions.Comment: Published in at http://dx.doi.org/10.1214/08-AOP445 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Variant of the Maximum Weight Independent Set Problem

    Full text link
    We study a natural extension of the Maximum Weight Independent Set Problem (MWIS), one of the most studied optimization problems in Graph algorithms. We are given a graph G=(V,E)G=(V,E), a weight function w:V→R+w: V \rightarrow \mathbb{R^+}, a budget function b:V→Z+b: V \rightarrow \mathbb{Z^+}, and a positive integer BB. The weight (resp. budget) of a subset of vertices is the sum of weights (resp. budgets) of the vertices in the subset. A kk-budgeted independent set in GG is a subset of vertices, such that no pair of vertices in that subset are adjacent, and the budget of the subset is at most kk. The goal is to find a BB-budgeted independent set in GG such that its weight is maximum among all the BB-budgeted independent sets in GG. We refer to this problem as MWBIS. Being a generalization of MWIS, MWBIS also has several applications in Scheduling, Wireless networks and so on. Due to the hardness results implied from MWIS, we study the MWBIS problem in several special classes of graphs. We design exact algorithms for trees, forests, cycle graphs, and interval graphs. In unweighted case we design an approximation algorithm for d+1d+1-claw free graphs whose approximation ratio (dd) is competitive with the approximation ratio (d2\frac{d}{2}) of MWIS (unweighted). Furthermore, we extend Baker's technique \cite{Baker83} to get a PTAS for MWBIS in planar graphs.Comment: 18 page
    • …
    corecore