508,909 research outputs found
Hallmarks of mechanochemistry: From nanoparticles to technology
The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references).Slovak Grant Agency VEGA 2/0009/11, 2/0043/11Slovak Agency for Science and Development APVV VV-0189-10, VV-0528-11Russian Foundation for Basic Research 10-03-00942a, 12-03-00651aMinistry of Science and Higher education in Poland CUT/c-1/DS/KWC/2008-2012, PB1T09B02330, NN209145136, NN20914893
Improving Productivity of Multiphase Flow Aerobic Oxidation Using a Tube-in-Tube Membrane Contactor
The application of flow reactors in multiphase catalytic reactions represents a promising approach for enhancing the efficiency of this important class of chemical reactions. We developed a simple approach to improve the reactor productivity of multiphase catalytic reactions performed using a flow chemistry unit with a packed bed reactor. Specifically, a tube-in-tube membrane contactor (sparger) integrated in-line with the flow reactor has been successfully applied to the aerobic oxidation of benzyl alcohol to benzaldehyde utilizing a heterogeneous palladium catalyst in the packed bed. We examined the effect of sparger hydrodynamics on reactor productivity quantified by space time yield (STY). Implementation of the sparger, versus segmented flow achieved with the built in gas dosing module (1) increased reactor productivity 4-fold quantified by space time yield while maintaining high selectivity and (2) improved process safety as demonstrated by lower effective operating pressures
Synthetic in vitro transcriptional oscillators
The construction of synthetic biochemical circuits from simple components illuminates how complex behaviors can arise in chemistry and builds a foundation for future biological technologies. A simplified analog of genetic regulatory networks, in vitro transcriptional circuits, provides a modular platform for the systematic construction of arbitrary circuits and requires only two essential enzymes, bacteriophage T7 RNA polymerase and Escherichia coli ribonuclease H, to produce and degrade RNA signals. In this study, we design and experimentally demonstrate three transcriptional oscillators in vitro. First, a negative feedback oscillator comprising two switches, regulated by excitatory and inhibitory RNA signals, showed up to five complete cycles. To demonstrate modularity and to explore the design space further, a positive-feedback loop was added that modulates and extends the oscillatory regime. Finally, a three-switch ring oscillator was constructed and analyzed. Mathematical modeling guided the design process, identified experimental conditions likely to yield oscillations, and explained the system's robust response to interference by short degradation products. Synthetic transcriptional oscillators could prove valuable for systematic exploration of biochemical circuit design principles and for controlling nanoscale devices and orchestrating processes within artificial cells
Preparation of small silicon carbide quantum dots by wet chemical etching
Fabrication of nanosized silicon carbide (SiC) crystals is a crucial step in many biomedical
applications. Here we report an effective fabrication method of SiC nanocrystals based on
simple electroless wet chemical etching of crystalline cubic SiC. Comparing an open reaction
system with a closed reaction chamber, we found that the latter produces smaller nanoparticles
(less than 8 nm diameter) with higher yield. Our samples show strong violet-blue emission in the
410–450 nm region depending on the solvents used and the size. Infrared measurements unraveled
that the surface of the fabricated nanoparticles is rich in oxidized carbon. This may open an
opportunity to use standard chemistry methods for further biological functionalization of such
nanoparticles
Water, O2 and Ice in Molecular Clouds
We model the temperature and chemical structure of molecular clouds as a
function of depth into the cloud, assuming a cloud of constant density n
illuminated by an external FUV (6 eV < E < 13.6 eV) flux G_0 (scaling factor in
multiples of the local interstellar field). Extending previous
photodissociation region models, we include the freezing of species, simple
grain surface chemistry, and desorption (including FUV photodesorption) of
ices. We also treat the opaque cloud interior with time-dependent chemistry.
Here, under certain conditions, gas phase elemental oxygen freezes out as water
ice and the elemental C/O abundance ratio can exceed unity, leading to complex
carbon chemistry. Gas phase H2O and O2 peak in abundance at intermediate depth
into the cloud, roughly A_V~3-8 from the surface, the depth proportional to
ln(G_0/n). Closer to the surface, molecules are photodissociated. Deeper into
the cloud, molecules freeze to grain surfaces. At intermediate depths
photodissociation rates are attenuated by dust extinction, but photodesorption
prevents total freezeout. For G_0 < 500, abundances of H2O and O2 peak at
values ~10^(-7), producing columns ~10^(15) per cm^2, independent of G_0 and n.
The peak abundances depend primarily on the product of the photodesorption
yield of water ice and the grain surface area per H nucleus. At higher values
of G_0, thermal desorption of O atoms from grains enhances the gas phase H2O
peak abundance and column slightly, whereas the gas phase O2 peak abundance
rises to ~10^(-5) and the column to ~2x10^(16) per cm^2. We present simple
analytic equations for the abundances as a function of depth which clarify the
dependence on parameters. The models are applied to observations of H2O, O2,
and water ice in a number of sources, including B68, NGC 2024, and Rho Oph.Comment: 70 pages including 17 figure
Enhanced cosmic-ray flux toward zeta Persei inferred from laboratory study of H3+ - e- recombination rate
The H3+ molecular ion plays a fundamental role in interstellar chemistry, as
it initiates a network of chemical reactions that produce many interstellar
molecules. In dense clouds, the H3+ abundance is understood using a simple
chemical model, from which observations of H3+ yield valuable estimates of
cloud path length, density, and temperature. On the other hand, observations of
diffuse clouds have suggested that H3+ is considerably more abundant than
expected from the chemical models. However, diffuse cloud models have been
hampered by the uncertain values of three key parameters: the rate of H3+
destruction by electrons, the electron fraction, and the cosmic-ray ionisation
rate. Here we report a direct experimental measurement of the H3+ destruction
rate under nearly interstellar conditions. We also report the observation of
H3+ in a diffuse cloud (towards zeta Persei) where the electron fraction is
already known. Taken together, these results allow us to derive the value of
the third uncertain model parameter: we find that the cosmic-ray ionisation
rate in this sightline is forty times faster than previously assumed. If such a
high cosmic-ray flux is indeed ubiquitous in diffuse clouds, the discrepancy
between chemical models and the previous observations of H3+ can be resolved.Comment: 6 pages, Nature, in pres
Improved Synthesis of 5-methylbenz(a)anthracene
A revised synthesis of 5-methylbenz(a)anthracene is reported. It involves only three simple and convenient steps starting from a commercially available compound, and gives a 82% overall yield. Bromination of 5-methylbenz(a)anthracene with N-bromosuccinimide (NBS) in carbon tetrachloride furnishes 5-bromomethylbenz(a)anthracene in a 92% yield. When bromination is carried out using dimethylformamide as the solvent, 7-bromo-5-methylbenz(a)anthracene is formed as the exclusive product
- …
