505 research outputs found

    Isogeny graphs with maximal real multiplication

    Get PDF
    An isogeny graph is a graph whose vertices are principally polarized abelian varieties and whose edges are isogenies between these varieties. In his thesis, Kohel described the structure of isogeny graphs for elliptic curves and showed that one may compute the endomorphism ring of an elliptic curve defined over a finite field by using a depth first search algorithm in the graph. In dimension 2, the structure of isogeny graphs is less understood and existing algorithms for computing endomorphism rings are very expensive. Our setting considers genus 2 jacobians with complex multiplication, with the assumptions that the real multiplication subring is maximal and has class number one. We fully describe the isogeny graphs in that case. Over finite fields, we derive a depth first search algorithm for computing endomorphism rings locally at prime numbers, if the real multiplication is maximal. To the best of our knowledge, this is the first DFS-based algorithm in genus 2

    Computing endomorphism rings of abelian varieties of dimension two

    Get PDF
    Generalizing a method of Sutherland and the author for elliptic curves, we design a subexponential algorithm for computing the endomorphism rings of ordinary abelian varieties of dimension two over finite fields. Although its correctness and complexity analysis rest on several assumptions, we report on practical computations showing that it performs very well and can easily handle previously intractable cases.Comment: 14 pages, 2 figure

    Isogeny graphs of ordinary abelian varieties

    Get PDF
    Fix a prime number â„“\ell. Graphs of isogenies of degree a power of â„“\ell are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field. We analyse graphs of so-called l\mathfrak l-isogenies, resolving that they are (almost) volcanoes in any dimension. Specializing to the case of principally polarizable abelian surfaces, we then exploit this structure to describe graphs of a particular class of isogenies known as (â„“,â„“)(\ell, \ell)-isogenies: those whose kernels are maximal isotropic subgroups of the â„“\ell-torsion for the Weil pairing. We use these two results to write an algorithm giving a path of computable isogenies from an arbitrary absolutely simple ordinary abelian surface towards one with maximal endomorphism ring, which has immediate consequences for the CM-method in genus 2, for computing explicit isogenies, and for the random self-reducibility of the discrete logarithm problem in genus 2 cryptography.Comment: 36 pages, 4 figure

    Hard isogeny problems over RSA moduli and groups with infeasible inversion

    Get PDF
    We initiate the study of computational problems on elliptic curve isogeny graphs defined over RSA moduli. We conjecture that several variants of the neighbor-search problem over these graphs are hard, and provide a comprehensive list of cryptanalytic attempts on these problems. Moreover, based on the hardness of these problems, we provide a construction of groups with infeasible inversion, where the underlying groups are the ideal class groups of imaginary quadratic orders. Recall that in a group with infeasible inversion, computing the inverse of a group element is required to be hard, while performing the group operation is easy. Motivated by the potential cryptographic application of building a directed transitive signature scheme, the search for a group with infeasible inversion was initiated in the theses of Hohenberger and Molnar (2003). Later it was also shown to provide a broadcast encryption scheme by Irrer et al. (2004). However, to date the only case of a group with infeasible inversion is implied by the much stronger primitive of self-bilinear map constructed by Yamakawa et al. (2014) based on the hardness of factoring and indistinguishability obfuscation (iO). Our construction gives a candidate without using iO.Comment: Significant revision of the article previously titled "A Candidate Group with Infeasible Inversion" (arXiv:1810.00022v1). Cleared up the constructions by giving toy examples, added "The Parallelogram Attack" (Sec 5.3.2). 54 pages, 8 figure

    Pairing-based algorithms for jacobians of genus 2 curves with maximal endomorphism ring

    Get PDF
    Using Galois cohomology, Schmoyer characterizes cryptographic non-trivial self-pairings of the â„“\ell-Tate pairing in terms of the action of the Frobenius on the â„“\ell-torsion of the Jacobian of a genus 2 curve. We apply similar techniques to study the non-degeneracy of the â„“\ell-Tate pairing restrained to subgroups of the â„“\ell-torsion which are maximal isotropic with respect to the Weil pairing. First, we deduce a criterion to verify whether the jacobian of a genus 2 curve has maximal endomorphism ring. Secondly, we derive a method to construct horizontal (â„“,â„“)(\ell,\ell)-isogenies starting from a jacobian with maximal endomorphism ring

    Isogenies of Elliptic Curves: A Computational Approach

    Get PDF
    Isogenies, the mappings of elliptic curves, have become a useful tool in cryptology. These mathematical objects have been proposed for use in computing pairings, constructing hash functions and random number generators, and analyzing the reducibility of the elliptic curve discrete logarithm problem. With such diverse uses, understanding these objects is important for anyone interested in the field of elliptic curve cryptography. This paper, targeted at an audience with a knowledge of the basic theory of elliptic curves, provides an introduction to the necessary theoretical background for understanding what isogenies are and their basic properties. This theoretical background is used to explain some of the basic computational tasks associated with isogenies. Herein, algorithms for computing isogenies are collected and presented with proofs of correctness and complexity analyses. As opposed to the complex analytic approach provided in most texts on the subject, the proofs in this paper are primarily algebraic in nature. This provides alternate explanations that some with a more concrete or computational bias may find more clear.Comment: Submitted as a Masters Thesis in the Mathematics department of the University of Washingto
    • …
    corecore