929,958 research outputs found

    Scalable Techniques for Similarity Search

    Get PDF
    Document similarity is similar to the nearest neighbour problem and has applications in various domains. In order to determine the similarity / dissimilarity of the documents first they need to be converted into sets containing shingles. Each document is converted into k-shingles, k being the length of each shingle. The similarity is calculated using Jaccard distance between sets and output into a characteristic matrix, the complexity to parse this matrix is significantly high especially when the sets are large. In this project we explore various approaches such as Min hashing, LSH & Bloom Filter to decrease the matrix size and to improve the time complexity. Min hashing creates a signature matrix which significantly smaller compared to a characteristic matrix. In this project we will look into Min-Hashing implementation, pros and cons. Also we will explore Locality Sensitive Hashing, Bloom Filters and their advantages

    Scalable Similarity Search for Molecular Descriptors

    Full text link
    Similarity search over chemical compound databases is a fundamental task in the discovery and design of novel drug-like molecules. Such databases often encode molecules as non-negative integer vectors, called molecular descriptors, which represent rich information on various molecular properties. While there exist efficient indexing structures for searching databases of binary vectors, solutions for more general integer vectors are in their infancy. In this paper we present a time- and space- efficient index for the problem that we call the succinct intervals-splitting tree algorithm for molecular descriptors (SITAd). Our approach extends efficient methods for binary-vector databases, and uses ideas from succinct data structures. Our experiments, on a large database of over 40 million compounds, show SITAd significantly outperforms alternative approaches in practice.Comment: To be appeared in the Proceedings of SISAP'1

    Hashing for Similarity Search: A Survey

    Full text link
    Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since the pioneering work locality sensitive hashing. We divide the hashing algorithms two main categories: locality sensitive hashing, which designs hash functions without exploring the data distribution and learning to hash, which learns hash functions according the data distribution, and review them from various aspects, including hash function design and distance measure and search scheme in the hash coding space

    A geometric framework for modelling similarity search

    Full text link
    The aim of this paper is to propose a geometric framework for modelling similarity search in large and multidimensional data spaces of general nature, which seems to be flexible enough to address such issues as analysis of complexity, indexability, and the `curse of dimensionality.' Such a framework is provided by the concept of the so-called similarity workload, which is a probability metric space Ω\Omega (query domain) with a distinguished finite subspace XX (dataset), together with an assembly of concepts, techniques, and results from metric geometry. They include such notions as metric transform, \e-entropy, and the phenomenon of concentration of measure on high-dimensional structures. In particular, we discuss the relevance of the latter to understanding the curse of dimensionality. As some of those concepts and techniques are being currently reinvented by the database community, it seems desirable to try and bridge the gap between database research and the relevant work already done in geometry and analysis.Comment: 11 pages, LaTeX 2.

    ONTOLOGY BASED TECHNICAL SKILL SIMILARITY

    Get PDF
    Online job boards have become a major platform for technical talent procurement and job search. These job portals have given rise to challenging matching and search problems. The core matching or search happens between technical skills of the job requirements and the candidate\u27s profile or keywords. The extensive list of technical skills and its polyonymous nature makes it less effective to perform a direct keyword matching. This results in substandard job matching or search results which misses out a closely matching candidate on account of it not having the exact skills. It is important to use a semantic similarity measure between skills to improve the relevance of the results. This paper proposes a semantic similarity measure between technical skills using a knowledge based approach. The approach builds an ontology using DBpedia and uses it to derive a similarity score. Feature based ontology similarity measures are used to derive a similarity score between two skills. The ontology also helps in resolving a base skill from its multiple representations. The paper discusses implementation of custom ontology, similarity measuring system and performance of the system in comparing technical skills. The proposed approach performs better than the Resumatcher system in finding the similarity between skills. Keywords

    Efficient seeding techniques for protein similarity search

    Get PDF
    We apply the concept of subset seeds proposed in [1] to similarity search in protein sequences. The main question studied is the design of efficient seed alphabets to construct seeds with optimal sensitivity/selectivity trade-offs. We propose several different design methods and use them to construct several alphabets.We then perform an analysis of seeds built over those alphabet and compare them with the standard Blastp seeding method [2,3], as well as with the family of vector seeds proposed in [4]. While the formalism of subset seed is less expressive (but less costly to implement) than the accumulative principle used in Blastp and vector seeds, our seeds show a similar or even better performance than Blastp on Bernoulli models of proteins compatible with the common BLOSUM62 matrix
    corecore