563 research outputs found

    Self-Supervised Learning for Spinal MRIs

    Full text link
    A significant proportion of patients scanned in a clinical setting have follow-up scans. We show in this work that such longitudinal scans alone can be used as a form of 'free' self-supervision for training a deep network. We demonstrate this self-supervised learning for the case of T2-weighted sagittal lumbar Magnetic Resonance Images (MRIs). A Siamese convolutional neural network (CNN) is trained using two losses: (i) a contrastive loss on whether the scan is of the same person (i.e. longitudinal) or not, together with (ii) a classification loss on predicting the level of vertebral bodies. The performance of this pre-trained network is then assessed on a grading classification task. We experiment on a dataset of 1016 subjects, 423 possessing follow-up scans, with the end goal of learning the disc degeneration radiological gradings attached to the intervertebral discs. We show that the performance of the pre-trained CNN on the supervised classification task is (i) superior to that of a network trained from scratch; and (ii) requires far fewer annotated training samples to reach an equivalent performance to that of the network trained from scratch.Comment: 3rd Workshop on Deep Learning in Medical Image Analysi

    Unsupervised Learning of Visual Representations using Videos

    Full text link
    Is strong supervision necessary for learning a good visual representation? Do we really need millions of semantically-labeled images to train a Convolutional Neural Network (CNN)? In this paper, we present a simple yet surprisingly powerful approach for unsupervised learning of CNN. Specifically, we use hundreds of thousands of unlabeled videos from the web to learn visual representations. Our key idea is that visual tracking provides the supervision. That is, two patches connected by a track should have similar visual representation in deep feature space since they probably belong to the same object or object part. We design a Siamese-triplet network with a ranking loss function to train this CNN representation. Without using a single image from ImageNet, just using 100K unlabeled videos and the VOC 2012 dataset, we train an ensemble of unsupervised networks that achieves 52% mAP (no bounding box regression). This performance comes tantalizingly close to its ImageNet-supervised counterpart, an ensemble which achieves a mAP of 54.4%. We also show that our unsupervised network can perform competitively in other tasks such as surface-normal estimation

    Chinese Medical Question Answer Matching Based on Interactive Sentence Representation Learning

    Full text link
    Chinese medical question-answer matching is more challenging than the open-domain question answer matching in English. Even though the deep learning method has performed well in improving the performance of question answer matching, these methods only focus on the semantic information inside sentences, while ignoring the semantic association between questions and answers, thus resulting in performance deficits. In this paper, we design a series of interactive sentence representation learning models to tackle this problem. To better adapt to Chinese medical question-answer matching and take the advantages of different neural network structures, we propose the Crossed BERT network to extract the deep semantic information inside the sentence and the semantic association between question and answer, and then combine with the multi-scale CNNs network or BiGRU network to take the advantage of different structure of neural networks to learn more semantic features into the sentence representation. The experiments on the cMedQA V2.0 and cMedQA V1.0 dataset show that our model significantly outperforms all the existing state-of-the-art models of Chinese medical question answer matching

    Context Embedding Networks

    Get PDF
    Low dimensional embeddings that capture the main variations of interest in collections of data are important for many applications. One way to construct these embeddings is to acquire estimates of similarity from the crowd. However, similarity is a multi-dimensional concept that varies from individual to individual. Existing models for learning embeddings from the crowd typically make simplifying assumptions such as all individuals estimate similarity using the same criteria, the list of criteria is known in advance, or that the crowd workers are not influenced by the data that they see. To overcome these limitations we introduce Context Embedding Networks (CENs). In addition to learning interpretable embeddings from images, CENs also model worker biases for different attributes along with the visual context i.e. the visual attributes highlighted by a set of images. Experiments on two noisy crowd annotated datasets show that modeling both worker bias and visual context results in more interpretable embeddings compared to existing approaches.Comment: CVPR 2018 spotligh
    • …
    corecore