3,847 research outputs found

    Configuration Sharing Optimized Placement and Routing

    Get PDF
    Reconfigurable systems have been shown to achieve very high computational performance. However, the overhead associated with reconfiguration of hardware remains a critical factor in overall system performance. This paper discusses the development and evaluation of a technique to minimize the delay associated with reconfiguration based upon optimized sharing of configuration bit streams between design contexts. This is achieved through modified placement and routing algorithms

    Probabilistic Principle Component Analysis based Feature Extraction of Embedded System Applications with Deep Neural Network based Implementation in FPGA

    Get PDF
    The study of hardware and software systems is of major are very important advent in new devices for communication and progress in system of security. In fast pace mobile and embedded devices application in every day’s life leads some new emerging area for research in data mining field. In this we have some technologies which have demand and error free using the principle of component of PPCA. For Embedded system the applications of PCA is basically applied initially for the lessen the having different qualities especially being to simple of the data. PPCA which have the updated version of PCA which is surveyed by similarity measure. In this work, experiments are extensively carried out, using a FPGA based light weight cryptographic data set having benchmark set to check and illustrate the viability, competence, litheness which are reconfigurable embedded system which are having data mining . Which have FPGA are reconfigurable for the computing architectures for hardware and in neural network. FPGA using the multilayer Cascaded for neural network which are forward in nature (CFFNN) and Deep Neural Network also called as DNN with a huge neuron is still a thought-provoking task. This shortcoming leads to elect the FPGA capacity for a particular application we have used the method of implementation which has two neural network have been implemented and compared , namely, CFFNN and DNN. It can be shown that for reconfigurable embedded system, PPCA based data mining and Machine learning based realization can give more speed up less iteration and more space savings when we have compared it with the static conventional version

    Hardware/software co-design of fractal features based fall detection system

    Get PDF
    Falls are a leading cause of death in older adults and result in high levels of mortality, morbidity and immobility. Fall Detection Systems (FDS) are imperative for timely medical aid and have been known to reduce death rate by 80%. We propose a novel wearable sensor FDS which exploits fractal dynamics of fall accelerometer signals. Fractal dynamics can be used as an irregularity measure of signals and our work shows that it is a key discriminant for classification of falls from other activities of life. We design, implement and evaluate a hardware feature accelerator for computation of fractal features through multi-level wavelet transform on a reconfigurable embedded System on Chip, Zynq device for evaluating wearable accelerometer sensors. The proposed FDS utilises a hardware/software co-design approach with hardware accelerator for fractal features and software implementation of Linear Discriminant Analysis on an embedded ARM core for high accuracy and energy efficiency. The proposed system achieves 99.38% fall detection accuracy, 7.3× speed-up and 6.53× improvements in power consumption, compared to the software only execution with an overall performance per Watt advantage of 47.6×, while consuming low reconfigurable resources at 28.67%

    FPGA-based real-time moving target detection system for unmanned aerial vehicle application

    Get PDF
    Moving target detection is the most common task for Unmanned Aerial Vehicle (UAV) to find and track object of interest from a bird's eye view in mobile aerial surveillance for civilian applications such as search and rescue operation. The complex detection algorithm can be implemented in a real-time embedded system using Field Programmable Gate Array (FPGA). This paper presents the development of real-time moving target detection System-on-Chip (SoC) using FPGA for deployment on a UAV. The detection algorithm utilizes area-based image registration technique which includes motion estimation and object segmentation processes. The moving target detection system has been prototyped on a low-cost Terasic DE2-115 board mounted with TRDB-D5M camera. The system consists of Nios II processor and stream-oriented dedicated hardware accelerators running at 100 MHz clock rate, achieving 30-frame per second processing speed for 640 × 480 pixels' resolution greyscale videos

    Fast Decision Algorithms in Low-Power Embedded Processors for Quality-of-Service Based Connectivity of Mobile Sensors in Heterogeneous Wireless Sensor Networks

    Get PDF
    When a mobile wireless sensor is moving along heterogeneous wireless sensor networks, it can be under the coverage of more than one network many times. In these situations, the Vertical Handoff process can happen, where the mobile sensor decides to change its connection from a network to the best network among the available ones according to their quality of service characteristics. A fitness function is used for the handoff decision, being desirable to minimize it. This is an optimization problem which consists of the adjustment of a set of weights for the quality of service. Solving this problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced applications. Numerous works can be found in the literature dealing with the vertical handoff decision, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision algorithm that explores the entire space of possible combinations of weights, searching that one that minimizes the fitness function; and second, to design and implement a system on chip architecture based on reconfigurable hardware and embedded processors to achieve several goals necessary for competitive mobile terminals: good performance, low power consumption, low economic cost, and small area integration
    • 

    corecore