467 research outputs found

    Constructions for orthogonal designs using signed group orthogonal designs

    Full text link
    Craigen introduced and studied signed group Hadamard matrices extensively and eventually provided an asymptotic existence result for Hadamard matrices. Following his lead, Ghaderpour introduced signed group orthogonal designs and showed an asymptotic existence result for orthogonal designs and consequently Hadamard matrices. In this paper, we construct some interesting families of orthogonal designs using signed group orthogonal designs to show the capability of signed group orthogonal designs in generation of different types of orthogonal designs.Comment: To appear in Discrete Mathematics (Elsevier). No figure

    Twin bent functions, strongly regular Cayley graphs, and Hurwitz-Radon theory

    Get PDF
    The real monomial representations of Clifford algebras give rise to two sequences of bent functions. For each of these sequences, the corresponding Cayley graphs are strongly regular graphs, and the corresponding sequences of strongly regular graph parameters coincide. Even so, the corresponding graphs in the two sequences are not isomorphic, except in the first 3 cases. The proof of this non-isomorphism is a simple consequence of a theorem of Radon.Comment: 13 pages. Addressed one reviewer's questions in the Discussion section, including more references. Resubmitted to JACODES Math, with updated affiliation (I am now an Honorary Fellow of the University of Melbourne

    On the Asymptotic Existence of Hadamard Matrices

    Full text link
    It is conjectured that Hadamard matrices exist for all orders 4t4t (t>0t>0). However, despite a sustained effort over more than five decades, the strongest overall existence results are asymptotic results of the form: for all odd natural numbers kk, there is a Hadamard matrix of order k2[a+blog2k]k2^{[a+b\log_2k]}, where aa and bb are fixed non-negative constants. To prove the Hadamard Conjecture, it is sufficient to show that we may take a=2a=2 and b=0b=0. Since Seberry's ground-breaking result, which showed that we may take a=0a=0 and b=2b=2, there have been several improvements where bb has been by stages reduced to 3/8. In this paper, we show that for all ϵ>0\epsilon>0, the set of odd numbers kk for which there is a Hadamard matrix of order k22+[ϵlog2k]k2^{2+[\epsilon\log_2k]} has positive density in the set of natural numbers. The proof adapts a number-theoretic argument of Erdos and Odlyzko to show that there are enough Paley Hadamard matrices to give the result.Comment: Keywords: Hadamard matrices, Asymptotic existence, Cocyclic Hadamard matrices, Relative difference sets, Riesel numbers, Extended Riemann hypothesis. (Received 2 August 2008, Available online 18 March 2009
    corecore