5,308 research outputs found

    Spectral Generalized Multi-Dimensional Scaling

    Full text link
    Multidimensional scaling (MDS) is a family of methods that embed a given set of points into a simple, usually flat, domain. The points are assumed to be sampled from some metric space, and the mapping attempts to preserve the distances between each pair of points in the set. Distances in the target space can be computed analytically in this setting. Generalized MDS is an extension that allows mapping one metric space into another, that is, multidimensional scaling into target spaces in which distances are evaluated numerically rather than analytically. Here, we propose an efficient approach for computing such mappings between surfaces based on their natural spectral decomposition, where the surfaces are treated as sampled metric-spaces. The resulting spectral-GMDS procedure enables efficient embedding by implicitly incorporating smoothness of the mapping into the problem, thereby substantially reducing the complexity involved in its solution while practically overcoming its non-convex nature. The method is compared to existing techniques that compute dense correspondence between shapes. Numerical experiments of the proposed method demonstrate its efficiency and accuracy compared to state-of-the-art approaches

    Key-Pose Prediction in Cyclic Human Motion

    Get PDF
    In this paper we study the problem of estimating innercyclic time intervals within repetitive motion sequences of top-class swimmers in a swimming channel. Interval limits are given by temporal occurrences of key-poses, i.e. distinctive postures of the body. A key-pose is defined by means of only one or two specific features of the complete posture. It is often difficult to detect such subtle features directly. We therefore propose the following method: Given that we observe the swimmer from the side, we build a pictorial structure of poselets to robustly identify random support poses within the regular motion of a swimmer. We formulate a maximum likelihood model which predicts a key-pose given the occurrences of multiple support poses within one stroke. The maximum likelihood can be extended with prior knowledge about the temporal location of a key-pose in order to improve the prediction recall. We experimentally show that our models reliably and robustly detect key-poses with a high precision and that their performance can be improved by extending the framework with additional camera views.Comment: Accepted at WACV 2015, 8 pages, 3 figure

    Face Recognition Via GroupWise Registration Method

    Get PDF
    One of the important research area in image processing is face recognition. We introduce a new framework for tackling face recognition problem. Here propose a new way technique of face recognition problem, which is formulated as group wise deformable image registration and feature matching. The main contributions of the proposed method is to suppresses image noise without reducing the image sharpness we will use Median filtering, Each pixel in a facial image is represented by an anatomical signature obtained from its corresponding most salient scale local region Based on the anatomical signature calculated from each pixel, a novel Markov random field based group wise registration framework is proposed to formulate the face recognition problem. DOI: 10.17762/ijritcc2321-8169.150317

    The motion of a deforming capsule through a corner

    Get PDF
    A three-dimensional deformable capsule convected through a square duct with a corner is studied via numerical simulations. We develop an accelerated boundary integral implementation adapted to general geometries and boundary conditions. A global spectral method is adopted to resolve the dynamics of the capsule membrane developing elastic tension according to the neo-Hookean constitutive law and bending moments in an inertialess flow. The simulations show that the trajectory of the capsule closely follows the underlying streamlines independently of the capillary number. The membrane deformability, on the other hand, significantly influences the relative area variations, the advection velocity and the principal tensions observed during the capsule motion. The evolution of the capsule velocity displays a loss of the time-reversal symmetry of Stokes flow due to the elasticity of the membrane. The velocity decreases while the capsule is approaching the corner as the background flow does, reaches a minimum at the corner and displays an overshoot past the corner due to the streamwise elongation induced by the flow acceleration in the downstream branch. This velocity overshoot increases with confinement while the maxima of the major principal tension increase linearly with the inverse of the duct width. Finally, the deformation and tension of the capsule are shown to decrease in a curved corner
    • …
    corecore