654,554 research outputs found

    Non-Blocking Signature of very large SOAP Messages

    Full text link
    Data transfer and staging services are common components in Grid-based, or more generally, in service-oriented applications. Security mechanisms play a central role in such services, especially when they are deployed in sensitive application fields like e-health. The adoption of WS-Security and related standards to SOAP-based transfer services is, however, problematic as a straightforward adoption of SOAP with MTOM introduces considerable inefficiencies in the signature generation process when large data sets are involved. This paper proposes a non-blocking, signature generation approach enabling a stream-like processing with considerable performance enhancements.Comment: 13 pages, 5 figure

    Lineshape distortion in a nonlinear auto-oscillator near generation threshold: Application to spin-torque nano-oscillators

    Full text link
    The lineshape in an auto-oscillator with a large nonlinear frequency shift in the presence of thermal noise is calculated. Near the generation threshold, this lineshape becomes strongly non-Lorentzian, broadened, and asymmetric. A Lorentzian lineshape is recovered far below and far above threshold, which suggests that lineshape distortions provide a signature of the generation threshold. The theory developed adequately describes the observed behavior of a strongly nonlinear spin-torque nano-oscillator.Comment: 4 pages, 3 figure

    Analysis of CDMA systems that are characterized by eigenvalue spectrum

    Full text link
    An approach by which to analyze the performance of the code division multiple access (CDMA) scheme, which is a core technology used in modern wireless communication systems, is provided. The approach characterizes the objective system by the eigenvalue spectrum of a cross-correlation matrix composed of signature sequences used in CDMA communication, which enables us to handle a wider class of CDMA systems beyond the basic model reported by Tanaka. The utility of the novel scheme is shown by analyzing a system in which the generation of signature sequences is designed for enhancing the orthogonality.Comment: 7 pages, 2 figure

    Polygraph: Automatically generating signatures for polymorphic worms

    Get PDF
    It is widely believed that content-signature-based intrusion detection systems (IDSes) are easily evaded by polymorphic worms, which vary their payload on every infection attempt. In this paper, we present Polygraph, a signature generation system that successfully produces signatures that match polymorphic worms. Polygraph generates signatures that consist of multiple disjoint content sub-strings. In doing so, Polygraph leverages our insight that for a real-world exploit to function properly, multiple invariant substrings must often be present in all variants of a payload; these substrings typically correspond to protocol framing, return addresses, and in some cases, poorly obfuscated code. We contribute a definition of the polymorphic signature generation problem; propose classes of signature suited for matching polymorphic worm payloads; and present algorithms for automatic generation of signatures in these classes. Our evaluation of these algorithms on a range of polymorphic worms demonstrates that Polygraph produces signatures for polymorphic worms that exhibit low false negatives and false positives. © 2005 IEEE

    Non-Blocking Signature of very large SOAP Messages

    Full text link
    Data transfer and staging services are common components in Grid-based, or more generally, in service-oriented applications. Security mechanisms play a central role in such services, especially when they are deployed in sensitive application fields like e-health. The adoption of WS-Security and related standards to SOAP-based transfer services is, however, problematic as a straightforward adoption of SOAP with MTOM introduces considerable inefficiencies in the signature generation process when large data sets are involved. This paper proposes a non-blocking, signature generation approach enabling a stream-like processing with considerable performance enhancements.Comment: 13 pages, 5 figure
    corecore