19 research outputs found

    Relaxation Bounds on the Minimum Pseudo-Weight of Linear Block Codes

    Full text link
    Just as the Hamming weight spectrum of a linear block code sheds light on the performance of a maximum likelihood decoder, the pseudo-weight spectrum provides insight into the performance of a linear programming decoder. Using properties of polyhedral cones, we find the pseudo-weight spectrum of some short codes. We also present two general lower bounds on the minimum pseudo-weight. The first bound is based on the column weight of the parity-check matrix. The second bound is computed by solving an optimization problem. In some cases, this bound is more tractable to compute than previously known bounds and thus can be applied to longer codes.Comment: To appear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    Multilevel Decoders Surpassing Belief Propagation on the Binary Symmetric Channel

    Full text link
    In this paper, we propose a new class of quantized message-passing decoders for LDPC codes over the BSC. The messages take values (or levels) from a finite set. The update rules do not mimic belief propagation but instead are derived using the knowledge of trapping sets. We show that the update rules can be derived to correct certain error patterns that are uncorrectable by algorithms such as BP and min-sum. In some cases even with a small message set, these decoders can guarantee correction of a higher number of errors than BP and min-sum. We provide particularly good 3-bit decoders for 3-left-regular LDPC codes. They significantly outperform the BP and min-sum decoders, but more importantly, they achieve this at only a fraction of the complexity of the BP and min-sum decoders.Comment: 5 pages, in Proc. of 2010 IEEE International Symposium on Information Theory (ISIT

    Low-Complexity Approaches to Slepian–Wolf Near-Lossless Distributed Data Compression

    Get PDF
    This paper discusses the Slepian–Wolf problem of distributed near-lossless compression of correlated sources. We introduce practical new tools for communicating at all rates in the achievable region. The technique employs a simple “source-splitting” strategy that does not require common sources of randomness at the encoders and decoders. This approach allows for pipelined encoding and decoding so that the system operates with the complexity of a single user encoder and decoder. Moreover, when this splitting approach is used in conjunction with iterative decoding methods, it produces a significant simplification of the decoding process. We demonstrate this approach for synthetically generated data. Finally, we consider the Slepian–Wolf problem when linear codes are used as syndrome-formers and consider a linear programming relaxation to maximum-likelihood (ML) sequence decoding. We note that the fractional vertices of the relaxed polytope compete with the optimal solution in a manner analogous to that observed when the “min-sum” iterative decoding algorithm is applied. This relaxation exhibits the ML-certificate property: if an integral solution is found, it is the ML solution. For symmetric binary joint distributions, we show that selecting easily constructable “expander”-style low-density parity check codes (LDPCs) as syndrome-formers admits a positive error exponent and therefore provably good performance

    Message-Passing Algorithms for Quadratic Minimization

    Full text link
    Gaussian belief propagation (GaBP) is an iterative algorithm for computing the mean of a multivariate Gaussian distribution, or equivalently, the minimum of a multivariate positive definite quadratic function. Sufficient conditions, such as walk-summability, that guarantee the convergence and correctness of GaBP are known, but GaBP may fail to converge to the correct solution given an arbitrary positive definite quadratic function. As was observed in previous work, the GaBP algorithm fails to converge if the computation trees produced by the algorithm are not positive definite. In this work, we will show that the failure modes of the GaBP algorithm can be understood via graph covers, and we prove that a parameterized generalization of the min-sum algorithm can be used to ensure that the computation trees remain positive definite whenever the input matrix is positive definite. We demonstrate that the resulting algorithm is closely related to other iterative schemes for quadratic minimization such as the Gauss-Seidel and Jacobi algorithms. Finally, we observe, empirically, that there always exists a choice of parameters such that the above generalization of the GaBP algorithm converges
    corecore