16 research outputs found

    Detection and classification of non-stationary signals using sparse representations in adaptive dictionaries

    Get PDF
    Automatic classification of non-stationary radio frequency (RF) signals is of particular interest in persistent surveillance and remote sensing applications. Such signals are often acquired in noisy, cluttered environments, and may be characterized by complex or unknown analytical models, making feature extraction and classification difficult. This thesis proposes an adaptive classification approach for poorly characterized targets and backgrounds based on sparse representations in non-analytical dictionaries learned from data. Conventional analytical orthogonal dictionaries, e.g., Short Time Fourier and Wavelet Transforms, can be suboptimal for classification of non-stationary signals, as they provide a rigid tiling of the time-frequency space, and are not specifically designed for a particular signal class. They generally do not lead to sparse decompositions (i.e., with very few non-zero coefficients), and use in classification requires separate feature selection algorithms. Pursuit-type decompositions in analytical overcomplete (non-orthogonal) dictionaries yield sparse representations, by design, and work well for signals that are similar to the dictionary elements. The pursuit search, however, has a high computational cost, and the method can perform poorly in the presence of realistic noise and clutter. One such overcomplete analytical dictionary method is also analyzed in this thesis for comparative purposes. The main thrust of the thesis is learning discriminative RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics. A pursuit search is used over the learned dictionaries to generate sparse classification features in order to identify time windows that contain a target pulse. Two state-of-the-art dictionary learning methods are compared, the K-SVD algorithm and Hebbian learning, in terms of their classification performance as a function of dictionary training parameters. Additionally, a novel hybrid dictionary algorithm is introduced, demonstrating better performance and higher robustness to noise. The issue of dictionary dimensionality is explored and this thesis demonstrates that undercomplete learned dictionaries are suitable for non-stationary RF classification. Results on simulated data sets with varying background clutter and noise levels are presented. Lastly, unsupervised classification with undercomplete learned dictionaries is also demonstrated in satellite imagery analysis

    Discrete Wavelet Methods for Interference Mitigation: An Application To Radio Astronomy

    Get PDF
    The field of wavelets concerns the analysis and alteration of signals at various resolutions. This is achieved through the use of analysis functions which are referred to as wavelets. A wavelet is a signal defined for some brief period of time that contains oscillatory characteristics. Generally, wavelets are intentionally designed to posses particular qualities relevant to a particular signal processing application. This research project makes use of wavelets to mitigate interference, and documents how wavelets are effective in the suppression of Radio Frequency Interference (RFI) in the context of radio astronomy. This study begins with the design of a library of smooth orthogonal wavelets well suited to interference suppression. This is achieved through the use of a multi-parameter optimization applied to a trigonometric parameterization of wavelet filters used for the implementation of the Discrete Wavelet Transform (DWT). This is followed by the design of a simplified wavelet interference suppression system, from which measures of performance and suitability are considered. It is shown that optimal performance metrics for the suppression system are that of Shannon’s entropy, Root Mean Square Error (RMSE) and normality testing using the Lilliefors test. From the application of these heuristics, the optimal thresholding mechanism was found to be the universal adaptive threshold and entropy based measures were found to be optimal for matching wavelets to interference. This in turn resulted in the implementation of the wavelet suppression system, which consisted of a bank of matched filters used to determine which interference source is present in a sampled time domain vector. From this, the astronomy based application was documented and results were obtained. It is shown that the wavelet based interference suppression system outperforms existing flagging techniques. This is achieved by considering measures of the number of sources within a radio-image of the Messier 83 (M83) galaxy and the power of the main source in the image. It is shown that designed system results in an increase of 27% in the number of sources in the recovered radio image and a 1.9% loss of power of the main source

    The perceptual flow of phonetic feature processing

    Get PDF

    Cross-spectral synergy and consonant identification (A)

    Get PDF
    corecore