2 research outputs found

    Assessment of underlying topography and forest height inversion based on TomoSAR methods

    Get PDF
    Due to the strong penetrability, long-wavelength synthetic aperture radar (SAR) can provide an opportunity to reconstruct the three-dimensional structure of the penetrable media. SAR tomography (TomoSAR) technology can resynthesize aperture perpendicular to the slant-range direction and then obtain the tomographic profile consisting of power distribution of different heights, providing a powerful technical tool for reconstructing the three-dimensional structure of the penetrable ground objects. As an emerging technology, it is different from the traditional interferometric SAR (InSAR) technology and has advantages in reconstructing the three-dimensional structure of the illuminated media. Over the past two decades, many TomoSAR methods have been proposed to improve the vertical resolution, aiming to distinguish the locations of different scatters in the unit pixel. In order to cope with the forest mission of European Space Agency (ESA) that is designed to provide P-band SAR measurements to determine the amount of biomass and carbon stored in forests, it is necessary to systematically evaluate the performance of forest height and underlying topography inversion using TomoSAR technology. In this paper, we adopt three typical algorithms, namely, Capon, Multiple Signal Classification (MUSIC), and Compressed Sensing (CS), to evaluate the performance in forest height and underlying topography inversion. The P-band airborne full-polarization (FP) SAR data of Lopè€ National Park in the AfriSAR campaign implemented by ESA in 2016 is adopted to verify the experiment. Furthermore, we explore the effects of different baseline designs and filter methods on the reconstruction of the tomographic profile. The results show that a better tomographic profile can be obtained by using Hamming window filter and Capon algorithm in uniform baseline distribution and a certain number of acquisitions. Compared with LiDAR results, the root-mean-square error (RMSE) of forest height and underlying topography obtained by Capon algorithm is 2.17 m and 1.58 m, which performs the best among the three algorithms

    Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios

    No full text
    Synthetic Aperture Radar (SAR) Tomography is a technique to provide direct three-dimensional (3D) imaging of the illuminated targets by processing SAR data acquired from different trajectories. In a large part of the literature, 3D imaging is achieved by assuming mono-dimensional (1D) approaches derived from SAR Interferometry, where a vector of pixels from multiple SAR images is transformed into a new vector of pixels representing the vertical profile of scene reflectivity at a given range, azimuth location. However, mono-dimensional approaches are only suited for data acquired from very closely-spaced trajectories, resulting in coarse vertical resolution. In the case of continuous media, such as forests, snow, ice sheets and glaciers, achieving fine vertical resolution is only possible in the presence of largely-spaced trajectories, which involves significant complications concerning the formation of 3D images. The situation gets even more complicated in the presence of irregular trajectories with variable headings, for which the one theoretically exact approach consists of going back to raw SAR data to resolve the targets by 3D back-projection, resulting in a computational burden beyond the capabilities of standard computers. The first aim of this paper is to provide an exhaustive discussion of the conditions under which high-quality tomographic processing can be carried out by assuming a 1D, 2D, or 3D approach to image formation. The case of 3D processing is then further analyzed, and a new processing method is proposed to produce high-quality imaging while largely reducing the computational burden, and without having to process the original raw data. Furthermore, the new method is shown to be easily parallelized and implemented using GPU processing. The analysis is supported by results from numerical simulations as well as from real airborne data from the ESA campaign AlpTomoSAR
    corecore