492,803 research outputs found

    Time-frequency represetation of radar signals using Doppler-Lag block searching Wigner-Ville distribution

    Get PDF
    Radar signals are time-varying signals where the signal parameters change over time. For these signals, Quadratic Time-Frequency Distribution (QTFD) offers advantages over classical spectrum estimation in terms of frequency and time resolution but it suffers heavily from cross-terms. In generating accurate Time-Frequency Representation (TFR), a kernel function must be able to suppress cross-terms while maintaining auto-terms energy especially in a non-cooperative environment where the parameters of the actual signal are unknown. Thus, a new signal-dependent QTFD is proposed that adaptively estimates the kernel parameters for a wide class of radar signals. The adaptive procedure, Doppler-Lag Block Searching (DLBS) kernel estimation was developed to serve this purpose. Accurate TFRs produced for all simulated radar signals with Instantaneous Frequency (IF) estimation performance are verified using Monte Carlo simulation meeting the requirements of the Cramer-Rao Lower Bound (CRLB) at SNR > 6 dB

    Digitizing signals - a short tutorial guide

    No full text
    Converting the analogue signal, as captured from a patient, into digital format is known as digitizing, or analogue to digital conversion. This is a vital first step in for digital signal processing. The acquisition of high-quality data requires appropriate choices of system and parameters (sampling rate, anti-alias filter, amplification, number of ‘bits’). Thus tutorial aims to provide a practical guide to making these choices, and explains the underlying principles (rather than the mathematical theory and proofs) and potential pitfalls. Illustrative examples from different physiological signals are provided

    Long-term monitoring of geodynamic surface deformation using SAR interferometry

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2014Synthetic Aperture Radar Interferometry (InSAR) is a powerful tool to measure surface deformation and is well suited for surveying active volcanoes using historical and existing satellites. However, the value and applicability of InSAR for geodynamic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations in the atmosphere, both of which reduce the sensitivity and accuracy of the technique. The aim of this PhD thesis research is: how to optimize the quantity and quality of deformation signals extracted from InSAR stacks that contain only a low number of images in order to facilitate volcano monitoring and the study of their geophysical signatures. In particular, the focus is on methods of mitigating atmospheric artifacts in interferograms by combining time-series InSAR techniques and external atmospheric delay maps derived by Numerical Weather Prediction (NWP) models. In the first chapter of the thesis, the potential of the NWP Weather Research & Forecasting (WRF) model for InSAR data correction has been studied extensively. Forecasted atmospheric delays derived from operational High Resolution Rapid Refresh for the Alaska region (HRRRAK) products have been compared to radiosonding measurements in the first chapter. The result suggests that the HRRR-AK operational products are a good data source for correcting atmospheric delays in spaceborne geodetic radar observations, if the geophysical signal to be observed is larger than 20 mm. In the second chapter, an advanced method for integrating NWP products into the time series InSAR workflow is developed. The efficiency of the algorithm is tested via simulated data experiments, which demonstrate the method outperforms other more conventional methods. In Chapter 3, a geophysical case study is performed by applying the developed algorithm to the active volcanoes of Unimak Island Alaska (Westdahl, Fisher and Shishaldin) for long term volcano deformation monitoring. The volcano source location at Westdahl is determined to be approx. 7 km below sea level and approx. 3.5 km north of the Westdahl peak. This study demonstrates that Fisher caldera has had continuous subsidence over more than 10 years and there is no evident deformation signal around Shishaldin peak.Chapter 1. Performance of the High Resolution Atmospheric Model HRRR-AK for Correcting Geodetic Observations from Spaceborne Radars -- Chapter 2. Robust atmospheric filtering of InSAR data based on numerical weather prediction models -- Chapter 3. Subtle motion long term monitoring of Unimak Island from 2003 to 2010 by advanced time series SAR interferometry -- Chapter 4. Conclusion and future work

    Improving Temporal Accuracy of Human Metabolic Chambers for Dynamic Metabolic Studies

    Get PDF
    Metabolic chambers are powerful tools for assessing human energy expenditure, providing flexibility and comfort for the subjects in a near free-living environment. However, the flexibility offered by the large living room size creates challenges in the assessment of dynamic human metabolic signals—such as those generated during high-intensity interval training and short-term involuntary physical activities—with sufficient temporal accuracy. Therefore, this paper presents methods to improve the temporal accuracy of metabolic chambers. The proposed methods include 1) adopting a shortest possible step size, here one minute, to compute the finite derivative terms for the metabolic rate calculation, and 2) applying a robust noise reduction method—total variation denoising—to minimize the large noise generated by the short derivative term whilst preserving the transient edges of the dynamic metabolic signals. Validated against 24-hour gas infusion tests, the proposed method reconstructs dynamic metabolic signals with the best temporal accuracy among state-of-the-art approaches, achieving a root mean square error of 0.27 kcal/min (18.8 J/s), while maintaining a low cumulative error in 24-hour total energy expenditure of less than 45 kcal/day (188280 J/day). When applied to a human exercise session, the proposed methods also show the best performance in terms of recovering the dynamics of exercise energy expenditure. Overall, the proposed methods improve the temporal resolution of the chamber system, enabling metabolic studies involving dynamic signals such as short interval exercises to carry out the metabolic chambers
    • 

    corecore