156 research outputs found

    Side-Information For Steganography Design And Detection

    Get PDF
    Today, the most secure steganographic schemes for digital images embed secret messages while minimizing a distortion function that describes the local complexity of the content. Distortion functions are heuristically designed to predict the modeling error, or in other words, how difficult it would be to detect a single change to the original image in any given area. This dissertation investigates how both the design and detection of such content-adaptive schemes can be improved with the use of side-information. We distinguish two types of side-information, public and private: Public side-information is available to the sender and at least in part also to anybody else who can observe the communication. Content complexity is a typical example of public side-information. While it is commonly used for steganography, it can also be used for detection. In this work, we propose a modification to the rich-model style feature sets in both spatial and JPEG domain to inform such feature sets of the content complexity. Private side-information is available only to the sender. The previous use of private side-information in steganography was very successful but limited to steganography in JPEG images. Also, the constructions were based on heuristic with little theoretical foundations. This work tries to remedy this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary domain. We also put forward a theoretical investigation of how to incorporate side-information based on a model of images. Third, we propose to use a novel type of side-information in the form of multiple exposures for JPEG steganography

    Further study on the security of S-UNIWARD

    Full text link

    Information Forensics and Security: A quarter-century-long journey

    Get PDF
    Information forensics and security (IFS) is an active R&D area whose goal is to ensure that people use devices, data, and intellectual properties for authorized purposes and to facilitate the gathering of solid evidence to hold perpetrators accountable. For over a quarter century, since the 1990s, the IFS research area has grown tremendously to address the societal needs of the digital information era. The IEEE Signal Processing Society (SPS) has emerged as an important hub and leader in this area, and this article celebrates some landmark technical contributions. In particular, we highlight the major technological advances by the research community in some selected focus areas in the field during the past 25 years and present future trends

    A constructive and unifying framework for zero-bit watermarking

    Get PDF
    In the watermark detection scenario, also known as zero-bit watermarking, a watermark, carrying no hidden message, is inserted in content. The watermark detector checks for the presence of this particular weak signal in content. The article looks at this problem from a classical detection theory point of view, but with side information enabled at the embedding side. This means that the watermark signal is a function of the host content. Our study is twofold. The first step is to design the best embedding function for a given detection function, and the best detection function for a given embedding function. This yields two conditions, which are mixed into one `fundamental' partial differential equation. It appears that many famous watermarking schemes are indeed solution to this `fundamental' equation. This study thus gives birth to a constructive framework unifying solutions, so far perceived as very different.Comment: submitted to IEEE Trans. on Information Forensics and Securit

    Side-Informed Steganography for JPEG Images by Modeling Decompressed Images

    Full text link
    Side-informed steganography has always been among the most secure approaches in the field. However, a majority of existing methods for JPEG images use the side information, here the rounding error, in a heuristic way. For the first time, we show that the usefulness of the rounding error comes from its covariance with the embedding changes. Unfortunately, this covariance between continuous and discrete variables is not analytically available. An estimate of the covariance is proposed, which allows to model steganography as a change in the variance of DCT coefficients. Since steganalysis today is best performed in the spatial domain, we derive a likelihood ratio test to preserve a model of a decompressed JPEG image. The proposed method then bounds the power of this test by minimizing the Kullback-Leibler divergence between the cover and stego distributions. We experimentally demonstrate in two popular datasets that it achieves state-of-the-art performance against deep learning detectors. Moreover, by considering a different pixel variance estimator for images compressed with Quality Factor 100, even greater improvements are obtained.Comment: 13 pages, 7 figures, 1 table, submitted to IEEE Transactions on Information Forensics & Securit

    A Natural Steganography Embedding Scheme Dedicated to Color Sensors in the JPEG Domain

    Get PDF
    International audienceUsing Natural Steganography (NS), a cover raw image acquired at sensitivity ISO 1 is transformed into a stego image whose statistical distribution is similar to a cover image acquired at sensitivity ISO 2 > ISO 1. This paper proposes such an embedding scheme for color sensors in the JPEG domain, extending thus the prior art proposed for the pixel domain and the JPEG domain for monochrome sensors. We first show that color sensors generate strong intra-block and inter-block dependencies between DCT coefficients and that theses dependencies are due to the demosaicking step in the development process. Capturing theses dependencies using an empirical covariance matrix, we propose a pseudo-embedding algorithm on greyscale JPEG images which uses up to four sub-lattices and 64 lattices to embed information while preserving the estimated correlations among DCT coefficients. We then compute an approximation of the average embedding rate w.r.t. the JPEG quality factor and evaluate the empirical security of the proposed scheme for linear and non-linear demosaicing schemes. Our experiments show that we can achieve high capacity (around 2 bit per nzAC) with a high empirical security (P E 30% using DCTR at QF 95)

    CNN Based Adversarial Embedding with Minimum Alteration for Image Steganography

    Full text link
    Historically, steganographic schemes were designed in a way to preserve image statistics or steganalytic features. Since most of the state-of-the-art steganalytic methods employ a machine learning (ML) based classifier, it is reasonable to consider countering steganalysis by trying to fool the ML classifiers. However, simply applying perturbations on stego images as adversarial examples may lead to the failure of data extraction and introduce unexpected artefacts detectable by other classifiers. In this paper, we present a steganographic scheme with a novel operation called adversarial embedding, which achieves the goal of hiding a stego message while at the same time fooling a convolutional neural network (CNN) based steganalyzer. The proposed method works under the conventional framework of distortion minimization. Adversarial embedding is achieved by adjusting the costs of image element modifications according to the gradients backpropagated from the CNN classifier targeted by the attack. Therefore, modification direction has a higher probability to be the same as the sign of the gradient. In this way, the so called adversarial stego images are generated. Experiments demonstrate that the proposed steganographic scheme is secure against the targeted adversary-unaware steganalyzer. In addition, it deteriorates the performance of other adversary-aware steganalyzers opening the way to a new class of modern steganographic schemes capable to overcome powerful CNN-based steganalysis.Comment: Submitted to IEEE Transactions on Information Forensics and Securit
    • …
    corecore