479 research outputs found

    DeepPoint3D: Learning Discriminative Local Descriptors using Deep Metric Learning on 3D Point Clouds

    Full text link
    Learning local descriptors is an important problem in computer vision. While there are many techniques for learning local patch descriptors for 2D images, recently efforts have been made for learning local descriptors for 3D points. The recent progress towards solving this problem in 3D leverages the strong feature representation capability of image based convolutional neural networks by utilizing RGB-D or multi-view representations. However, in this paper, we propose to learn 3D local descriptors by directly processing unstructured 3D point clouds without needing any intermediate representation. The method constitutes a deep network for learning permutation invariant representation of 3D points. To learn the local descriptors, we use a multi-margin contrastive loss which discriminates between similar and dissimilar points on a surface while also leveraging the extent of dissimilarity among the negative samples at the time of training. With comprehensive evaluation against strong baselines, we show that the proposed method outperforms state-of-the-art methods for matching points in 3D point clouds. Further, we demonstrate the effectiveness of the proposed method on various applications achieving state-of-the-art results

    DeepHash: Getting Regularization, Depth and Fine-Tuning Right

    Full text link
    This work focuses on representing very high-dimensional global image descriptors using very compact 64-1024 bit binary hashes for instance retrieval. We propose DeepHash: a hashing scheme based on deep networks. Key to making DeepHash work at extremely low bitrates are three important considerations -- regularization, depth and fine-tuning -- each requiring solutions specific to the hashing problem. In-depth evaluation shows that our scheme consistently outperforms state-of-the-art methods across all data sets for both Fisher Vectors and Deep Convolutional Neural Network features, by up to 20 percent over other schemes. The retrieval performance with 256-bit hashes is close to that of the uncompressed floating point features -- a remarkable 512 times compression

    Image similarity using Deep CNN and Curriculum Learning

    Full text link
    Image similarity involves fetching similar looking images given a reference image. Our solution called SimNet, is a deep siamese network which is trained on pairs of positive and negative images using a novel online pair mining strategy inspired by Curriculum learning. We also created a multi-scale CNN, where the final image embedding is a joint representation of top as well as lower layer embedding's. We go on to show that this multi-scale siamese network is better at capturing fine grained image similarities than traditional CNN's.Comment: 9 pages, 6 figures, GHCI 17 conferenc

    CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples

    Full text link
    Convolutional Neural Networks (CNNs) achieve state-of-the-art performance in many computer vision tasks. However, this achievement is preceded by extreme manual annotation in order to perform either training from scratch or fine-tuning for the target task. In this work, we propose to fine-tune CNN for image retrieval from a large collection of unordered images in a fully automated manner. We employ state-of-the-art retrieval and Structure-from-Motion (SfM) methods to obtain 3D models, which are used to guide the selection of the training data for CNN fine-tuning. We show that both hard positive and hard negative examples enhance the final performance in particular object retrieval with compact codes.Comment: ECCV 201

    Fine-tuning CNN Image Retrieval with No Human Annotation

    Full text link
    Image descriptors based on activations of Convolutional Neural Networks (CNNs) have become dominant in image retrieval due to their discriminative power, compactness of representation, and search efficiency. Training of CNNs, either from scratch or fine-tuning, requires a large amount of annotated data, where a high quality of annotation is often crucial. In this work, we propose to fine-tune CNNs for image retrieval on a large collection of unordered images in a fully automated manner. Reconstructed 3D models obtained by the state-of-the-art retrieval and structure-from-motion methods guide the selection of the training data. We show that both hard-positive and hard-negative examples, selected by exploiting the geometry and the camera positions available from the 3D models, enhance the performance of particular-object retrieval. CNN descriptor whitening discriminatively learned from the same training data outperforms commonly used PCA whitening. We propose a novel trainable Generalized-Mean (GeM) pooling layer that generalizes max and average pooling and show that it boosts retrieval performance. Applying the proposed method to the VGG network achieves state-of-the-art performance on the standard benchmarks: Oxford Buildings, Paris, and Holidays datasets.Comment: TPAMI 2018. arXiv admin note: substantial text overlap with arXiv:1604.0242

    From handcrafted to deep local features

    Full text link
    This paper presents an overview of the evolution of local features from handcrafted to deep-learning-based methods, followed by a discussion of several benchmarks and papers evaluating such local features. Our investigations are motivated by 3D reconstruction problems, where the precise location of the features is important. As we describe these methods, we highlight and explain the challenges of feature extraction and potential ways to overcome them. We first present handcrafted methods, followed by methods based on classical machine learning and finally we discuss methods based on deep-learning. This largely chronologically-ordered presentation will help the reader to fully understand the topic of image and region description in order to make best use of it in modern computer vision applications. In particular, understanding handcrafted methods and their motivation can help to understand modern approaches and how machine learning is used to improve the results. We also provide references to most of the relevant literature and code.Comment: Preprin

    AI Oriented Large-Scale Video Management for Smart City: Technologies, Standards and Beyond

    Full text link
    Deep learning has achieved substantial success in a series of tasks in computer vision. Intelligent video analysis, which can be broadly applied to video surveillance in various smart city applications, can also be driven by such powerful deep learning engines. To practically facilitate deep neural network models in the large-scale video analysis, there are still unprecedented challenges for the large-scale video data management. Deep feature coding, instead of video coding, provides a practical solution for handling the large-scale video surveillance data. To enable interoperability in the context of deep feature coding, standardization is urgent and important. However, due to the explosion of deep learning algorithms and the particularity of feature coding, there are numerous remaining problems in the standardization process. This paper envisions the future deep feature coding standard for the AI oriented large-scale video management, and discusses existing techniques, standards and possible solutions for these open problems.Comment: 8 pages, 8 figures, 5 table

    Scalable Change Retrieval Using Deep 3D Neural Codes

    Full text link
    We present a novel scalable framework for image change detection (ICD) from an on-board 3D imagery system. We argue that existing ICD systems are constrained by the time required to align a given query image with individual reference image coordinates. We utilize an invariant coordinate system (ICS) to replace the time-consuming image alignment with an offline pre-processing procedure. Our key contribution is an extension of the traditional image comparison-based ICD tasks to setups of the image retrieval (IR) task. We replace each component of the 3D ICD system, i.e., (1) image modeling, (2) image alignment, and (3) image differencing, with significantly efficient variants from the bag-of-words (BoW) IR paradigm. Further, we train a deep 3D feature extractor in an unsupervised manner using an unsupervised Siamese network and automatically collected training data. We conducted experiments on a challenging cross-season ICD task using a publicly available dataset and thereby validate the efficacy of the proposed approach.Comment: 5 pages, 1 figure, technical repor

    Large age-gap face verification by feature injection in deep networks

    Full text link
    This paper introduces a new method for face verification across large age gaps and also a dataset containing variations of age in the wild, the Large Age-Gap (LAG) dataset, with images ranging from child/young to adult/old. The proposed method exploits a deep convolutional neural network (DCNN) pre-trained for the face recognition task on a large dataset and then fine-tuned for the large age-gap face verification task. Finetuning is performed in a Siamese architecture using a contrastive loss function. A feature injection layer is introduced to boost verification accuracy, showing the ability of the DCNN to learn a similarity metric leveraging external features. Experimental results on the LAG dataset show that our method is able to outperform the face verification solutions in the state of the art considered.Comment: Submitte

    Learning Local Shape Descriptors from Part Correspondences With Multi-view Convolutional Networks

    Full text link
    We present a new local descriptor for 3D shapes, directly applicable to a wide range of shape analysis problems such as point correspondences, semantic segmentation, affordance prediction, and shape-to-scan matching. The descriptor is produced by a convolutional network that is trained to embed geometrically and semantically similar points close to one another in descriptor space. The network processes surface neighborhoods around points on a shape that are captured at multiple scales by a succession of progressively zoomed out views, taken from carefully selected camera positions. We leverage two extremely large sources of data to train our network. First, since our network processes rendered views in the form of 2D images, we repurpose architectures pre-trained on massive image datasets. Second, we automatically generate a synthetic dense point correspondence dataset by non-rigid alignment of corresponding shape parts in a large collection of segmented 3D models. As a result of these design choices, our network effectively encodes multi-scale local context and fine-grained surface detail. Our network can be trained to produce either category-specific descriptors or more generic descriptors by learning from multiple shape categories. Once trained, at test time, the network extracts local descriptors for shapes without requiring any part segmentation as input. Our method can produce effective local descriptors even for shapes whose category is unknown or different from the ones used while training. We demonstrate through several experiments that our learned local descriptors are more discriminative compared to state of the art alternatives, and are effective in a variety of shape analysis applications
    • …
    corecore