26,049 research outputs found
Silicon Derived from Glass Bottles as Anode Materials for Lithium Ion Full Cell Batteries.
Every year many tons of waste glass end up in landfills without proper recycling, which aggravates the burden of waste disposal in landfill. The conversion from un-recycled glass to favorable materials is of great significance for sustainable strategies. Recently, silicon has been an exceptional anode material towards large-scale energy storage applications, due to its extraordinary lithiation capacity of 3579 mAh g-1 at ambient temperature. Compared with other quartz sources obtained from pre-leaching processes which apply toxic acids and high energy-consuming annealing, an interconnected silicon network is directly derived from glass bottles via magnesiothermic reduction. Carbon-coated glass derived-silicon (gSi@C) electrodes demonstrate excellent electrochemical performance with a capacity of ~1420 mAh g-1 at C/2 after 400 cycles. Full cells consisting of gSi@C anodes and LiCoO2 cathodes are assembled and achieve good initial cycling stability with high energy density
Cu-catalyzed Si-NWS grown on “carbon paper” as anodes for Li-ion cells
The very high theoretical capacity of the silicon (4200mAh/g more than 10 times larger than graphite), environmental-friendly, abundant and low-cost, makes it a potential candidate to replace graphite in high energy density Li-ion batteries. As a drawback, silicon suffers from huge volume changes (300%) on alloying and dealloying with Li, leading a structural deformation that induces disruption. The use of nanostructured silicon materials has been shown to be an effective way to avoid this mechanical degradation of the active material. In this paper the synthesis of silicon nanowires, grown on a highly porous 3D-like carbon paper substrate by CVD using Cu as the catalyst, is presented. The use of carbon paper allows to achieve remarkable loadings of active material (2-5 mg/cm2) and, consequently, high capacity densities. The silicon electrode was investigated both morphologically and electrochemically. To improve the electrochemical performance various strategies have been carried out. It was observed that a very slow first cycle (C/40), which helps the formation of a stable solid electrolyte interphase on the silicon surface, improves the performance of the cells; nevertheless, their cycle life has been found not fully satisfactory. Morphological analysis of the Si-NWs electrodes before and after cycling showed the presence of a dense silicon layer below the nanowires which could reduce the electrical contact between the active material and the substrate
Increased Cycling Efficiency and Rate Capability of Copper-coated Silicon Anodes in Lithium-ion Batteries
Cycling efficiency and rate capability of porous copper-coated, amorphous
silicon thin-film negative electrodes are compared to equivalent silicon
thin-film electrodes in lithium-ion batteries. The presence of a copper layer
coated on the active material plays a beneficial role in increasing the cycling
efficiency and the rate capability of silicon thin-film electrodes. Between 3C
and C/8 discharge rates, the available cell energy decreased by 8% and 18% for
40 nm copper-coated silicon and equivalent silicon thin-film electrodes,
respectively. Copper-coated silicon thin-film electrodes also show higher
cycling efficiency, resulting in lower capacity fade, than equivalent silicon
thin-film electrodes. We believe that copper appears to act as a glue that
binds the electrode together and prevents the electronic isolation of silicon
particles, thereby decreasing capacity loss. Rate capability decreases
significantly at higher copper-coating thicknesses as the silicon
active-material is not accessed, suggesting that the thickness and porosity of
the copper coating need to be optimized for enhanced capacity retention and
rate capability in this system.Comment: 15 pages, 6 figure
Recommended from our members
Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities.
Limited by the size of microelectronics, as well as the space of electrical vehicles, there are tremendous demands for lithium-ion batteries with high volumetric energy densities. Current lithium-ion batteries, however, adopt graphite-based anodes with low tap density and gravimetric capacity, resulting in poor volumetric performance metric. Here, by encapsulating nanoparticles of metallic tin in mechanically robust graphene tubes, we show tin anodes with high volumetric and gravimetric capacities, high rate performance, and long cycling life. Pairing with a commercial cathode material LiNi0.6Mn0.2Co0.2O2, full cells exhibit a gravimetric and volumetric energy density of 590 W h Kg-1 and 1,252 W h L-1, respectively, the latter of which doubles that of the cell based on graphite anodes. This work provides an effective route towards lithium-ion batteries with high energy density for a broad range of applications
Simulations of the X-ray imaging capabilities of the Silicon Drift Detectors (SDD) for the LOFT Wide Field Monitor
The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the
four Cosmic Vision M3 candidate missions to undergo an assessment phase, will
revolutionize the study of compact objects in our galaxy and of the brightest
supermassive black holes in active galactic nuclei. The Large Area Detector
(LAD), carrying an unprecedented effective area of 10 m^2, is complemented by a
coded-mask Wide Field Monitor, in charge of monitoring a large fraction of the
sky potentially accessible to the LAD, to provide the history and context for
the sources observed by LAD and to trigger its observations on their most
interesting and extreme states. In this paper we present detailed simulations
of the imaging capabilities of the Silicon Drift Detectors developed for the
LOFT Wide Field Monitor detection plane. The simulations explore a large
parameter space for both the detector design and the environmental conditions,
allowing us to optimize the detector characteristics and demonstrating the
X-ray imaging performance of the large-area SDDs in the 2-50 keV energy band.Comment: Proceedings of SPIE, Vol. 8443, Paper No. 8443-210, 201
The digital data processing concepts of the LOFT mission
The Large Observatory for X-ray Timing (LOFT) is one of the five mission
candidates that were considered by ESA for an M3 mission (with a launch
opportunity in 2022 - 2024). LOFT features two instruments: the Large Area
Detector (LAD) and the Wide Field Monitor (WFM). The LAD is a 10 m 2 -class
instrument with approximately 15 times the collecting area of the largest
timing mission so far (RXTE) for the first time combined with CCD-class
spectral resolution. The WFM will continuously monitor the sky and recognise
changes in source states, detect transient and bursting phenomena and will
allow the mission to respond to this. Observing the brightest X-ray sources
with the effective area of the LAD leads to enormous data rates that need to be
processed on several levels, filtered and compressed in real-time already on
board. The WFM data processing on the other hand puts rather low constraints on
the data rate but requires algorithms to find the photon interaction location
on the detector and then to deconvolve the detector image in order to obtain
the sky coordinates of observed transient sources. In the following, we want to
give an overview of the data handling concepts that were developed during the
study phase.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014:
Ultraviolet to Gamma Ray, 91446
- …
