1,079 research outputs found

    Personalized video summarization by highest quality frames

    Get PDF
    In this work, a user-centered approach has been the basis for generation of the personalized video summaries. Primarily, the video experts score and annotate the video frames during the enrichment phase. Afterwards, the frames scores for different video segments will be updated based on the captured end-users (different with video experts) priorities towards existing video scenes. Eventually, based on the pre-defined skimming time, the highest scored video frames will be extracted to be included into the personalized video summaries. In order to evaluate the effectiveness of our proposed model, we have compared the video summaries generated by our system against the results from 4 other summarization tools using different modalities

    Contextual cropping and scaling of TV productions

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0804-3. Copyright @ Springer Science+Business Media, LLC 2011.In this paper, an application is presented which automatically adapts SDTV (Standard Definition Television) sports productions to smaller displays through intelligent cropping and scaling. It crops regions of interest of sports productions based on a smart combination of production metadata and systematic video analysis methods. This approach allows a context-based composition of cropped images. It provides a differentiation between the original SD version of the production and the processed one adapted to the requirements for mobile TV. The system has been comprehensively evaluated by comparing the outcome of the proposed method with manually and statically cropped versions, as well as with non-cropped versions. Envisaged is the integration of the tool in post-production and live workflows

    Personalized video summarization based on group scoring

    Get PDF
    In this paper an expert-based model for generation of personalized video summaries is suggested. The video frames are initially scored and annotated by multiple video experts. Thereafter, the scores for the video segments that have been assigned the higher priorities by end users will be upgraded. Considering the required summary length, the highest scored video frames will be inserted into a personalized final summary. For evaluation purposes, the video summaries generated by our system have been compared against the results from a number of automatic and semi-automatic summarization tools that use different modalities for abstraction

    Automatic detection of salient objects and spatial relations in videos for a video database system

    Get PDF
    Cataloged from PDF version of article.Multimedia databases have gained popularity due to rapidly growing quantities of multimedia data and the need to perform efficient indexing, retrieval and analysis of this data. One downside of multimedia databases is the necessity to process the data for feature extraction and labeling prior to storage and querying. Huge amount of data makes it impossible to complete this task manually. We propose a tool for the automatic detection and tracking of salient objects, and derivation of spatio-temporal relations between them in video. Our system aims to reduce the work for manual selection and labeling of objects significantly by detecting and tracking the salient objects, and hence, requiring to enter the label for each object only once within each shot instead of specifying the labels for each object in every frame they appear. This is also required as a first step in a fully-automatic video database management system in which the labeling should also be done automatically. The proposed framework covers a scalable architecture for video processing and stages of shot boundary detection, salient object detection and tracking, and knowledge-base construction for effective spatio-temporal object querying. (c) 2008 Elsevier B.V. All rights reserved

    A COMPUTATION METHOD/FRAMEWORK FOR HIGH LEVEL VIDEO CONTENT ANALYSIS AND SEGMENTATION USING AFFECTIVE LEVEL INFORMATION

    No full text
    VIDEO segmentation facilitates e±cient video indexing and navigation in large digital video archives. It is an important process in a content-based video indexing and retrieval (CBVIR) system. Many automated solutions performed seg- mentation by utilizing information about the \facts" of the video. These \facts" come in the form of labels that describe the objects which are captured by the cam- era. This type of solutions was able to achieve good and consistent results for some video genres such as news programs and informational presentations. The content format of this type of videos is generally quite standard, and automated solutions were designed to follow these format rules. For example in [1], the presence of news anchor persons was used as a cue to determine the start and end of a meaningful news segment. The same cannot be said for video genres such as movies and feature films. This is because makers of this type of videos utilized different filming techniques to design their videos in order to elicit certain affective response from their targeted audience. Humans usually perform manual video segmentation by trying to relate changes in time and locale to discontinuities in meaning [2]. As a result, viewers usually have doubts about the boundary locations of a meaningful video segment due to their different affective responses. This thesis presents an entirely new view to the problem of high level video segmentation. We developed a novel probabilistic method for affective level video content analysis and segmentation. Our method had two stages. In the first stage, aŸective content labels were assigned to video shots by means of a dynamic bayesian 0. Abstract 3 network (DBN). A novel hierarchical-coupled dynamic bayesian network (HCDBN) topology was proposed for this stage. The topology was based on the pleasure- arousal-dominance (P-A-D) model of aŸect representation [3]. In principle, this model can represent a large number of emotions. In the second stage, the visual, audio and aŸective information of the video was used to compute a statistical feature vector to represent the content of each shot. Affective level video segmentation was achieved by applying spectral clustering to the feature vectors. We evaluated the first stage of our proposal by comparing its emotion detec- tion ability with all the existing works which are related to the field of aŸective video content analysis. To evaluate the second stage, we used the time adaptive clustering (TAC) algorithm as our performance benchmark. The TAC algorithm was the best high level video segmentation method [2]. However, it is a very computationally intensive algorithm. To accelerate its computation speed, we developed a modified TAC (modTAC) algorithm which was designed to be mapped easily onto a field programmable gate array (FPGA) device. Both the TAC and modTAC algorithms were used as performance benchmarks for our proposed method. Since affective video content is a perceptual concept, the segmentation per- formance and human agreement rates were used as our evaluation criteria. To obtain our ground truth data and viewer agreement rates, a pilot panel study which was based on the work of Gross et al. [4] was conducted. Experiment results will show the feasibility of our proposed method. For the first stage of our proposal, our experiment results will show that an average improvement of as high as 38% was achieved over previous works. As for the second stage, an improvement of as high as 37% was achieved over the TAC algorithm
    • 

    corecore