262,676 research outputs found
Generalized Shortest Path Kernel on Graphs
We consider the problem of classifying graphs using graph kernels. We define
a new graph kernel, called the generalized shortest path kernel, based on the
number and length of shortest paths between nodes. For our example
classification problem, we consider the task of classifying random graphs from
two well-known families, by the number of clusters they contain. We verify
empirically that the generalized shortest path kernel outperforms the original
shortest path kernel on a number of datasets. We give a theoretical analysis
for explaining our experimental results. In particular, we estimate
distributions of the expected feature vectors for the shortest path kernel and
the generalized shortest path kernel, and we show some evidence explaining why
our graph kernel outperforms the shortest path kernel for our graph
classification problem.Comment: Short version presented at Discovery Science 2015 in Banf
Finding next-to-shortest paths in a graph
We study the problem of finding the next-to-shortest paths in a
graph. A next-to-shortest -path is a shortest -path
amongst -paths with length strictly greater than the length of
the shortest -path. In constrast to the situation in directed
graphs, where the problem has been shown to be NP-hard, providing edges of length zero are allowed,
we prove the somewhat surprising result that there is a polynomial
time algorithm for the undirected version of the problem
Shortest Paths Avoiding Forbidden Subpaths
In this paper we study a variant of the shortest path problem in graphs:
given a weighted graph G and vertices s and t, and given a set X of forbidden
paths in G, find a shortest s-t path P such that no path in X is a subpath of
P. Path P is allowed to repeat vertices and edges. We call each path in X an
exception, and our desired path a shortest exception-avoiding path. We
formulate a new version of the problem where the algorithm has no a priori
knowledge of X, and finds out about an exception x in X only when a path
containing x fails. This situation arises in computing shortest paths in
optical networks. We give an algorithm that finds a shortest exception avoiding
path in time polynomial in |G| and |X|. The main idea is to run Dijkstra's
algorithm incrementally after replicating vertices when an exception is
discovered.Comment: 12 pages, 2 figures. Fixed a few typos, rephrased a few sentences,
and used the STACS styl
Computing a rectilinear shortest path amid splinegons in plane
We reduce the problem of computing a rectilinear shortest path between two
given points s and t in the splinegonal domain \calS to the problem of
computing a rectilinear shortest path between two points in the polygonal
domain. As part of this, we define a polygonal domain \calP from \calS and
transform a rectilinear shortest path computed in \calP to a path between s and
t amid splinegon obstacles in \calS. When \calS comprises of h pairwise
disjoint splinegons with a total of n vertices, excluding the time to compute a
rectilinear shortest path amid polygons in \calP, our reduction algorithm takes
O(n + h \lg{n}) time. For the special case of \calS comprising of concave-in
splinegons, we have devised another algorithm in which the reduction procedure
does not rely on the structures used in the algorithm to compute a rectilinear
shortest path in polygonal domain. As part of these, we have characterized few
of the properties of rectilinear shortest paths amid splinegons which could be
of independent interest
- …
