44 research outputs found

    Blind Estimation of Multi-Path and Multi-User Spread Spectrum Channels and Jammer Excision via the Evolutionary Spectral Theory

    Get PDF
    Despite the significant advantages of direct sequence spreadspectrum communications, whenever the number of users increases orthe received signal is corrupted by an intentional jammer signal,it is necessary to model and estimate the channel effects in orderto equalize the received signal, as well as to excise the jammingsignals from it. Due to multi-path and Doppler effects in thetransmission channels, they are modeled as random, time-varyingsystems. Considering a wide sense stationary channel during thetransmission of a number of bits, a linear time-varying modelcharacterized by a random number of paths, each beingcharacterized by a delay, an attenuation factor and a Dopplerfrequency shift, is shown to be an appropriate channel model. Itis shown that the estimation of the parameters of such models ispossible by means of the spreading function, related to thetime-varying frequency response of the system and the associatedevolutionary kernels. Applying the time-frequency orfrequency-frequency discrete evolutionary transforms, we show thata blind estimation procedure is possible by computing thespreading function from the discrete evolutionary transform ofthe received signal. The estimation also requires the synchronizedpseudo-noise sequence for either of the users we are interestedin. The estimation procedure requires to adaptively implementingthe discrete evolutionary transform to estimate the spreadingfunction and determine the channel parameters. Once the number ofpaths, delays, Doppler frequencies and attenuations characterizingthe channel are found, a decision parameter can be obtained todetermine the transmitted bit. We will show also that ourestimation approach supports multiuser communication applicationssuch as uplink and downlink in wireless communicationtransmissions. In the case of an intentional jamming, common inmilitary applications, we consider a receiver based onnon-stationary Wiener masking that excises such jammer as well asinterference from other users. Both the mask and the optimalestimator are obtained from the discrete evolutionarytransformation. The estimated parameters from the computedspreading function, corresponding to the closest to the line ofsight signal path, provide an efficient detection scheme. Ourprocedures are illustrated with simulations, that display thebit-error rate for different levels of channel noise and jammersignals

    A novel STFT implementation for the analysis of non-stationary jammer interference

    Get PDF
    A novel adaptive short-time Fourier transform (STFT) implementation for the analysis of non-stationary multi-component jammer signals is introduced. The proposed time-frequency distribution is the fusion of optimum STFTs of individual signal components that are based on the recently introduced generalized time-bandwidth product (GTBP) definition. The GTBP optimal STFTs of the components are combined through thresholding and obtaining the individual component support images, which are related with the corresponding GTBP optimal STFTs

    Filtering techniques for mitigating microwave oven interference on 802.11b wireless local area networks

    Get PDF
    Thesis (M.Eng. and S.B.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 165-169).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.With the increasing popularity and assimilation of wireless devices into the everyday lives of people, the issue of their feasibility for coexisting with other radio frequency (RF) devices arises. Particularly strong interferers for the IEEE 802.11b standard are microwave ovens, since both operate at 2.4 GHz. The interference mitigation techniques all exploit the differences between the interference and the signal, since the former is sinusoidal in nature while the latter can be viewed as noise. The first mitigation filter operates in the frequency domain and filters the received signal's Fast Fourier Transform (FFT) sequence by detecting and removing peak sinusoidal components over the flat 3- dB bandwidth of the signal. The second is a Least Mean Square (LMS) Adaptive filter that produces an estimate of the interference through a recursive approximation method and subtracts it out from the received signal. The third and last is the Adaptive Notch Filter (ANF) which implements a lattice structure and has a time-varying notch frequency parameter that converges to and tracks the frequency of the interference in the received signal. The three filters are shown to produce improvements in the bit error rate (BER) and frame error rate (FER) performance of the receiver under various relative strengths of the signal with respect to the interference.by Lorenzo M. Lorilla.M.Eng.and S.B

    Time-Frequency Jammer excision for Multi-carrier spread spectrum using adaptive filtering

    Get PDF
    The development of new wireless technologies, the improvement of existing ones and thereduction on the wireless devices prices is increasing the number of users, the demand forbandwidth and the demand for higher data rates. The spread of the technology howeverbring some drawbacks. One is the increasing interference level that can degrades the wirelesscommunications. Many different techniques are used to minimize the interference and theeffect of the channel (multipath, Doppler etc) in a wireless channel. This thesis considers thefrequency and time processing of a jammer affected multi-carrier spread spectrum (MC-SS)system. A linear chirp is used as a spreading sequence. Such a sequence not only providesa constant envelope, but also allows the estimation of the channel parameters using a lineartime-invariant model. Hence time-delays and Doppler frequency shifts can be representedby effective time shifts. The discrete evolutionary transform (DET) time-frequency repre-sentation is used for estimating the channel characteristics and for detecting jammers. Oncethe jammers are detected, the original spreading function corresponding to the jammed fre-quency is adapted to minimize the jammer effects. The bit detection is then performed usinga least mean square (LMS) adaptive filter and it is done in both time- and frequency-domain.To illustrate the performance of the method, simulations with different signal to noise ratios,different jammer to signal ratios and different Doppler shifts were performed. The resultsindicate that the method is capable of excising the jammers providing a good bit error ratein low Doppler situations

    Wavelet-based multi-carrier code division multiple access systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Radio frequency interference detection and mitigation techniques for navigation and Earth observation

    Get PDF
    Radio-Frequency Interference (RFI) signals are undesired signals that degrade or disrupt the performance of a wireless receiver. RFI signals can be troublesome for any receiver, but they are especially threatening for applications that use very low power signals. This is the case of applications that rely on the Global Navigation Satellite Systems (GNSS), or passive microwave remote sensing applications such as Microwave Radiometry (MWR) and GNSS-Reflectometry (GNSS-R). In order to solve the problem of RFI, RFI-countermeasures are under development. This PhD thesis is devoted to the design, implementation and test of innovative RFI-countermeasures in the fields of MWR and GNSS. In the part devoted to RFI-countermeasures for MWR applications, first, this PhD thesis completes the development of the MERITXELL instrument. The MERITXELL is a multi-frequency total-power radiometer conceived to be an outstanding platform to perform detection, characterization, and localization of RFI signals at the most common MWR imaging bands up to 92 GHz. Moreover, a novel RFI mitigation technique is proposed for MWR: the Multiresolution Fourier Transform (MFT). An assessment of the performance of the MFT has been carried out by comparison with other time-frequency mitigation techniques. According to the results, the MFT technique is a good trade-off solution among all other techniques since it can mitigate efficiently all kinds of RFI signals under evaluation. In the part devoted to RFI-countermeasures for GNSS and GNSS-R applications, first, a system for RFI detection and localization at GNSS bands is proposed. This system is able to detect RFI signals at the L1 band with a sensitivity of -108 dBm at full-band, and of -135 dBm for continuous wave and chirp-like signals when using the averaged spectrum technique. Besides, the Generalized Spectral Separation Coefficient (GSSC) is proposed as a figure of merit to evaluate the Signal-to-Noise Ratio (SNR) degradation in the Delay-Doppler Maps (DDMs) due to the external RFI effect. Furthermore, the FENIX system has been conceived as an innovative system for RFI detection and mitigation and anti-jamming for GNSS and GNSS-R applications. FENIX uses the MFT blanking as a pre-correlation excision tool to perform the mitigation. In addition, FENIX has been designed to be cross-GNSS compatible and RFI-independent. The principles of operation of the MFT blanking algorithm are assessed and compared with other techniques for GNSS signals. Its performance as a mitigation tool is proven using GNSS-R data samples from a real airborne campaign. After that, the main building blocks of the patented architecture of FENIX have been described. The FENIX architecture has been implemented in three real-time prototypes. Moreover, a simulator named FENIX-Sim allows for testing its performance under different jamming scenarios. The real-time performance of FENIX prototype has been tested using different setups. First, a customized VNA has been built in order to measure the transfer function of FENIX in the presence of several representative RFI/jamming signals. The results show how the power transfer function adapts itself to mitigate the RFI/jamming signal. Moreover, several real-time tests with GNSS receivers have been performed using GPS L1 C/A, GPS L2C, and Galileo E1OS. The results show that FENIX provides an extra resilience against RFI and jamming signals up to 30 dB. Furthermore, FENIX is tested using a real GNSS timing setup. Under nominal conditions, when no RFI/jamming signal is present, a small additional jitter on the order of 2-4 ns is introduced in the system. Besides, a maximum bias of 45 ns has been measured under strong jamming conditions (-30 dBm), which is acceptable for current timing systems requiring accuracy levels of 100 ns. Finally, the design of a backup system for GNSS in tracking applications that require high reliability against RFI and jamming attacks is proposed.Les interferències de radiofreqüència (RFI) són senyals no desitjades que degraden o interrompen el funcionament dels receptors sense fils. Les RFI poden suposar un problema per qualsevol receptor, però són especialment amenaçadores per les a aplicacions que fan servir senyals de molt baixa potència. Aquest és el cas de les aplicacions que depenen dels sistemes mundials de navegació per satèl·lit (GNSS) o de les aplicacions de teledetecció passiva de microones, com la radiometria de microones (MWR) i la reflectometria GNSS (GNSS-R). Per combatre aquest problema, sistemes anti-RFI s'estan desenvolupament actualment. Aquesta tesi doctoral està dedicada al disseny, la implementació i el test de sistemes anti-RFI innovadors en els camps de MWR i GNSS. A la part dedicada als sistemes anti-RFI en MWR, aquesta tesi doctoral completa el desenvolupament de l'instrument MERITXELL. El MERITXELL és un radiòmetre multifreqüència concebut com una plataforma excepcional per la detecció, caracterització i localització de RFI a les bandes de MWR més utilitzades per sota dels 92 GHz. A més a més, es proposa una nova tècnica de mitigació de RFI per MWR: la Transformada de Fourier amb Multiresolució (MFT). El funcionament de la MFT s'ha comparat amb el d'altres tècniques de mitigació en els dominis del temps i la freqüència. D'acord amb els resultats obtinguts, la MFT és una bona solució de compromís entre les altres tècniques, ja que pot mitigar de manera eficient tots els tipus de senyals RFI considerats. A la part dedicada als sistemes anti-RFI en GNSS i GNSS-R, primer es proposa un sistema per a la detecció i localització de RFI a les bandes GNSS. Aquest sistema és capaç de detectar senyals RFI a la banda L1 amb una sensibilitat de -108 dBm a tota la banda, i de -135 dBm per a senyals d'ona contínua i chirp fen un mitjana de l'espectre. A més a més, el Coeficient de Separació Espectral Generalitzada (GSSC) es proposa com una mesura per avaluar la degradació de la relació senyal a soroll (SNR) en els Mapes de Delay-Doppler (DDM) a causa del impacte de les RFI. La major contribució d'aquesta tesi doctoral és el sistema FENIX. FENIX és un sistema innovador de detecció i mitigació de RFI i inhibidors de freqüència per aplicacions GNSS i GNSS-R. FENIX utilitza la MFT per eliminar la interferència abans del procés de correlació amb el codi GNSS independentment del tipus de RFI. L'algoritme de mitigació de FENIX s'ha avaluat i comparat amb altres tècniques i els principals components de la seva arquitectura patentada es descriuen. Finalment, un simulador anomenat FENIX-Sim permet avaluar el seu rendiment en diferents escenaris d'interferència. El funcionament en temps real del prototip FENIX ha estat provat utilitzant diferents mètodes. En primer lloc, s'ha creat un analitzador de xarxes per a mesurar la funció de transferència del FENIX en presència de diverses RFI representatives. Els resultats mostren com la funció de transferència s'adapta per mitigar el senyal interferent. A més a més, s'han realitzat diferents proves en temps real amb receptors GNSS compatibles amb els senyals GPS L1 C/A, GPS L2C i Galileo E1OS. Els resultats mostren que FENIX proporciona una resistència addicional contra les RFI i els senyals dels inhibidors de freqüència de fins a 30 dB. A més a més, FENIX s'ha provat amb un sistema comercial de temporització basat en GNSS. En condicions nominals, sense RFI, FENIX introdueix un petit error addicional de tan sols 2-4 ns. Per contra, el biaix màxim mesurat en condicions d'alta interferència (-30 dBm) és de 45 ns, el qual és acceptable per als sistemes de temporització actuals que requereixen nivells de precisió d'uns 100 ns. Finalment, es proposa el disseny d'un sistema robust de seguiment, complementari als GNSS, per a aplicacions que requereixen alta fiabilitat contra RFI.Postprint (published version

    Interference Mitigation and Localization Based on Time-Frequency Analysis for Navigation Satellite Systems

    Get PDF
    Interference Mitigation and Localization Based on Time-Frequency Analysis for Navigation Satellite SystemsNowadays, the operation of global navigation satellite systems (GNSS) is imperative across a multitude of applications worldwide. The increasing reliance on accurate positioning and timing information has made more serious than ever the consequences of possible service outages in the satellite navigation systems. Among others, interference is regarded as the primary threat to their operation. Due the recent proliferation of portable interferers, notably jammers, it has now become common for GNSS receivers to endure simultaneous attacks from multiple sources of interference, which are likely spatially distributed and transmit different modulations. To the best knowledge of the author, the present dissertation is the first publication to investigate the use of the S-transform (ST) to devise countermeasures to interference. The original contributions in this context are mainly: • the formulation of a complexity-scalable ST implementable in real time as a bank of filters; • a method for characterizing and localizing multiple in-car jammers through interference snapshots that are collected by separate receivers and analysed with a clever use of the ST; • a preliminary assessment of novel methods for mitigating generic interference at the receiver end by means the ST and more computationally efficient variants of the transform. Besides GNSSs, the countermeasures to interference proposed are equivalently applicable to protect any direct-sequence spread spectrum (DS-SS) communication

    Treatise on Hearing: The Temporal Auditory Imaging Theory Inspired by Optics and Communication

    Full text link
    A new theory of mammalian hearing is presented, which accounts for the auditory image in the midbrain (inferior colliculus) of objects in the acoustical environment of the listener. It is shown that the ear is a temporal imaging system that comprises three transformations of the envelope functions: cochlear group-delay dispersion, cochlear time lensing, and neural group-delay dispersion. These elements are analogous to the optical transformations in vision of diffraction between the object and the eye, spatial lensing by the lens, and second diffraction between the lens and the retina. Unlike the eye, it is established that the human auditory system is naturally defocused, so that coherent stimuli do not react to the defocus, whereas completely incoherent stimuli are impacted by it and may be blurred by design. It is argued that the auditory system can use this differential focusing to enhance or degrade the images of real-world acoustical objects that are partially coherent. The theory is founded on coherence and temporal imaging theories that were adopted from optics. In addition to the imaging transformations, the corresponding inverse-domain modulation transfer functions are derived and interpreted with consideration to the nonuniform neural sampling operation of the auditory nerve. These ideas are used to rigorously initiate the concepts of sharpness and blur in auditory imaging, auditory aberrations, and auditory depth of field. In parallel, ideas from communication theory are used to show that the organ of Corti functions as a multichannel phase-locked loop (PLL) that constitutes the point of entry for auditory phase locking and hence conserves the signal coherence. It provides an anchor for a dual coherent and noncoherent auditory detection in the auditory brain that culminates in auditory accommodation. Implications on hearing impairments are discussed as well.Comment: 603 pages, 131 figures, 13 tables, 1570 reference

    Wavelet based design of digital multichannel communications systems

    Get PDF
    The huge penetration of the personal communications systems in the market is constantly presenting new challenges to the research, aimed at satisfying people's needs and requirements for effective communication systems. At present, the cellular telephone network is perhaps the most evident example of communication system that has had a great impact on the lives of ordinary people and, at the same time, is the subject of interest of many researchers both at academic and industrial level. For the future, one of the main challenges in telecommunications will be the provision of ubiquitous broadband tetherless integrated services to mobile users. Such a pretentious goal cannot be achieved without a continuous research facing such problems as service quality, complete mobility support, and affordable complexity that are still open problems. However, present telecommunication problems are not only a matter of implementation or development of new services, exploiting a totally assessed doctrine. In order to respond to the mobility of the users personal communication systems have to deal with the wireless communication channel whereby mobility and non-stationarity of the propagation conditions require a stochastic description of the channel parameters. While this fact can be viewed as strong limitation to the development of a solid theory whose validity can be assesed in practice, on the other hand allows for an investigation and study of novel communication schemes, sometimes encompassing basic aspects of digital communications. This thesis, is the result of a research work that has investigated one of the basic building block of every communication systems, the modulation scheme, and the design of the pulse shape carrying the digital information. We have studied the design of multichannel communication scheme exploiting the mathematical theory of wavelets. Such a theory, developed recently, has had a great impact in many fields of engineering and of other scientific disciplines. In particular, wavelet theory has become very popular in the signal processing area; in fact it is a flexible toolbox for signal analysis allowing effective representation of signals for features extraction purposes. The main features that make wavelet waveforms suitable to be used as shaping pulses for modulation are their substantial compact support both in the time and frequency domains, and the fact that they are ISI-free pulses over frequency flat channels. The study presented in this thesis is focused on application of wavelet theory to design high-efficiency multichannel communication schemes and to the performance evaluation over linear and non-linear channels. We present a general method to design wavelet based multichannel communication schemes that we denoted Wavelet Orthogonal Frequency Division Multiplexing (WOFDM). We show that such schemes, having a largerspectral efficiency for a small number of channels, are a valid alternative to the classical OFDM. Potential advantage of wavelet modulation are shown presenting other applications examined in this thesis: a joint use of WOFDM and Trellis Coded Modulation to shape the power spectrum in order to match a frequency selective channel and minimize distortion, and application to spread spectrum modulation. Particular attention has been devoted to the timing recovery problem in multichannel communication schemes, exploiting the timing information of the different subchannels to improve the error variance in estimation of the sampling instant leading to a reduction of the adjacent channels interferenc
    corecore