3 research outputs found

    Feature selection and parameter optimization with GA-LSSVM in electricity price forecasting

    Get PDF
    Forecasting price has now become essential task in the operation of electrical power system. Power producers and customers use short term price forecasts to manage and plan for bidding approaches, and hence increasing the utility’s profit and energy efficiency as well. The main challenge in forecasting electricity price is when dealing with non-stationary and high volatile price series. Some of the factors influencing this volatility are load behavior, weather, fuel price and transaction of import and export due to long term contract. This paper proposes the use of Least Square Support Vector Machine (LSSVM) with Genetic Algorithm (GA) optimization technique to predict daily electricity prices in Ontario. The selection of input data and LSSVM’s parameter held by GA are proven to improve accuracy as well as efficiency of prediction. A comparative study of proposed approach with other techniques and previous research was conducted in term of forecast accuracy, where the results indicate that (1) the LSSVM with GA outperforms other methods of LSSVM and Neural Network (NN), (2) the optimization algorithm of GA gives better accuracy than Particle Swarm Optimization (PSO) and cross validation. However, future study should emphasize on improving forecast accuracy during spike event since Ontario power market is reported as among the most volatile market worldwide

    Midterm Electricity Market Clearing Price Forecasting Using Two-Stage Multiple Support Vector Machine

    Get PDF

    Forecasting Mid-Term Electricity Market Clearing Price Using Support Vector Machines

    Get PDF
    In a deregulated electricity market, offering the appropriate amount of electricity at the right time with the right bidding price is of paramount importance. The forecasting of electricity market clearing price (MCP) is a prediction of future electricity price based on given forecast of electricity demand, temperature, sunshine, fuel cost, precipitation and other related factors. Currently, there are many techniques available for short-term electricity MCP forecasting, but very little has been done in the area of mid-term electricity MCP forecasting. The mid-term electricity MCP forecasting focuses electricity MCP on a time frame from one month to six months. Developing mid-term electricity MCP forecasting is essential for mid-term planning and decision making, such as generation plant expansion and maintenance schedule, reallocation of resources, bilateral contracts and hedging strategies. Six mid-term electricity MCP forecasting models are proposed and compared in this thesis: 1) a single support vector machine (SVM) forecasting model, 2) a single least squares support vector machine (LSSVM) forecasting model, 3) a hybrid SVM and auto-regression moving average with external input (ARMAX) forecasting model, 4) a hybrid LSSVM and ARMAX forecasting model, 5) a multiple SVM forecasting model and 6) a multiple LSSVM forecasting model. PJM interconnection data are used to test the proposed models. Cross-validation technique was used to optimize the control parameters and the selection of training data of the six proposed mid-term electricity MCP forecasting models. Three evaluation techniques, mean absolute error (MAE), mean absolute percentage error (MAPE) and mean square root error (MSRE), are used to analysis the system forecasting accuracy. According to the experimental results, the multiple SVM forecasting model worked the best among all six proposed forecasting models. The proposed multiple SVM based mid-term electricity MCP forecasting model contains a data classification module and a price forecasting module. The data classification module will first pre-process the input data into corresponding price zones and then the forecasting module will forecast the electricity price in four parallel designed SVMs. This proposed model can best improve the forecasting accuracy on both peak prices and overall system compared with other 5 forecasting models proposed in this thesis
    corecore