350 research outputs found

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    Full text link
    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a `basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.Comment: submitted to Scientific Repor

    Emulating long-term synaptic dynamics with memristive devices

    Get PDF
    The potential of memristive devices is often seeing in implementing neuromorphic architectures for achieving brain-like computation. However, the designing procedures do not allow for extended manipulation of the material, unlike CMOS technology, the properties of the memristive material should be harnessed in the context of such computation, under the view that biological synapses are memristors. Here we demonstrate that single solid-state TiO2 memristors can exhibit associative plasticity phenomena observed in biological cortical synapses, and are captured by a phenomenological plasticity model called triplet rule. This rule comprises of a spike-timing dependent plasticity regime and a classical hebbian associative regime, and is compatible with a large amount of electrophysiology data. Via a set of experiments with our artificial, memristive, synapses we show that, contrary to conventional uses of solid-state memory, the co-existence of field- and thermally-driven switching mechanisms that could render bipolar and/or unipolar programming modes is a salient feature for capturing long-term potentiation and depression synaptic dynamics. We further demonstrate that the non-linear accumulating nature of memristors promotes long-term potentiating or depressing memory transitions

    Six networks on a universal neuromorphic computing substrate

    Get PDF
    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality

    Highly Scalable Neuromorphic Hardware with 1-bit Stochastic nano-Synapses

    Full text link
    Thermodynamic-driven filament formation in redox-based resistive memory and the impact of thermal fluctuations on switching probability of emerging magnetic switches are probabilistic phenomena in nature, and thus, processes of binary switching in these nonvolatile memories are stochastic and vary from switching cycle-to-switching cycle, in the same device, and from device-to-device, hence, they provide a rich in-situ spatiotemporal stochastic characteristic. This work presents a highly scalable neuromorphic hardware based on crossbar array of 1-bit resistive crosspoints as distributed stochastic synapses. The network shows a robust performance in emulating selectivity of synaptic potentials in neurons of primary visual cortex to the orientation of a visual image. The proposed model could be configured to accept a wide range of nanodevices.Comment: 9 pages, 6 figure

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing
    corecore